-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChapter2.Rmd
336 lines (231 loc) · 7.08 KB
/
Chapter2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
---
title: "Statistical Rethinking - Chapter 2"
author: "Lucy Liu"
output:
html_document:
df_print: paged
---
```{r, echo=FALSE, message=FALSE}
library(knitr)
```
Questions from 'Statistical Rethinking' by Richard McElreath, Chapter 2.
# Easy
1. 2&4 - $Pr(rain|Monday)$ & $Pr(rain,Monday) / Pr(Monday)$
2. 3 - The probability that it is Monday, given that it is raining.
3. 1&4 - $Pr(Monday|rain)$ & $Pr(rain|Monday) Pr(Monday) / Pr(rain)$
4. We are inferring the % of water on the globe and relating this to the probability of a finger landing on water after tossing the globe. This probability has not objective reality as it either ends up on water or land, it cannot end up on 0.7 water.
# Medium
## Question 1
Calculate posterior distributions:
a) WWW
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#define prior
prior <- rep(1,20)
#number 1 x 20 times
# compute likelihood
likelihood <- dbinom(3, size = 3, prob = pGrid)
# likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
b) WWWL
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#define prior
prior <- rep(1,20)
#number 1 x 20 times
#compute likelihood
likelihood <- dbinom(3, size = 4, prob = pGrid)
#likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
c) LWWLWWW
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#define prior
prior <- rep(1,20)
#number 1 x 20 times
#compute likelihood
likelihood <- dbinom(5, size = 7, prob = pGrid)
#likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
## Question 2
Prior at <0.5 is 0 and >=0 is 1
a) WWW
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#define prior
prior <- ifelse(pGrid<0.5,0,1)
#number 1 x 20 times
# compute likelihood
likelihood <- dbinom(3, size = 3, prob = pGrid)
# likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
b) WWWL
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#use above prior
#compute likelihood
likelihood <- dbinom(3, size = 4, prob = pGrid)
#likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
c) LWWLWWW
```{r}
#define grid
pGrid <- seq(from = 0, to = 1, length.out = 20)
#sequence of 20 evenly spaced numbers from 0 to 1
#use above prior
#compute likelihood
likelihood <- dbinom(5, size = 7, prob = pGrid)
#likelihood x prior
unstdPosterior <- likelihood*prior
#standardise
post <- unstdPosterior/sum(unstdPosterior)
plot(post)
```
## Question 3
Prove $Pr(Earth|land)=0.23$
$Pr(Earth|land)=Pr(land|Earth)Pr(Earth)/Pr(land)$
$Pr(Earth|land)=(0.30*0.5)/0.65=0.23$
Note that: $Pr(land)=(0.5*0.3)+(0.5*1)$ or $Pr(Earth,land)+Pr(Mars,land)$
## Question 4
* Card 1: 2
* Card 2: 1
* Card 3: 0
$Pr(card1|data)=2/3$
## Question 5
* Card 1: 2
* Card 2: 1
* Card 3: 0
* Card 4: 2
$Pr(card1\cup card4 |data)=4/5$
## Question 6
* Card 1: black side-2, weight-1 = 2
* Card 2: black side-1, weight-2 = 2
* Card 3: black side-0, weight-3 = 0
$Pr(card1|data) = 2/4=0.5$
Using likelihood
## Question 7
* BB:2
+BW:1 - 2
+WW:2 - 4
* BW:1
+WW:2 - 2
+BB:0 - 0
$Pr(BB) = 4+2/8=0.75$
![](images/chap2-1.jpg)
Using priors to calculate this:
```{r}
##ORDER:
# BB,BW,WW
#Data 1: card 1 is black side up
#Prior = all cards equally likely to be drawn.
prior <- c(1,1,1)
#likelihood of each card, given data
likelihood <- c(2,1,0)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
#Data 2: card 2 is white side up
prior <- posterior
likelihood <- c(3,2,1)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
posterior
```
# Hard
## Question 1
```{r}
#Both species equally likely
prior <- c(0.5,0.5)
#Given data (twins), plausibility of species A and species B
likelihood <- c(0.1,0.2)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
#Likelihood of next twins?
posterior[1]*0.1 + posterior[2]*0.2
```
Alternative way of computing:
Think of the species A prior as the plausibility of species A given the 1st bit of data, twins:
$$Pr(A|twins)=\frac{Pr(twins|A)Pr(A)}{Pr(twins)}$$
$$Pr(A|twins)=\frac{0.1*0.5}{0.15}=0.33$$
The species B prior is the plausibility of species B given the 1st bit of data, twins:
$$Pr(B|twins)=\frac{Pr(twins|B)Pr(B)}{Pr(twins)}$$
$$Pr(A|twins)=\frac{0.2*0.5}{0.15}=0.66$$
The likelihood that the next birth will also be twins, using the law of total probability, is:
$$Pr(A|twins)*Pr(twins|A)+Pr(B|twins)*Pr(twins|B) \\= 0.33*0.1+0.66*0.2=0.166$$
From [link](http://www.rpubs.com/andersgs/my_solutions_chapter2_statrethink)
The result of 0.167 makes sense. If the species was species B, then the probability of twins would be 0.2, if species A, it would be 0.1. As we don’t know the species, it makes sense that the probability should be something in between those two values. Where exactly, will depend on how plausible species A and B are. Without any additional information, we see that that the probability of the twins is 0.15, or exactly in the middle. When observing a single twin birth, we should update the relative plausibility of each species accordingly. In doing so, the probability of observing twins in the next birth moves a little towards 0.2, reflecting that now species B is more plausible than species A.
## Question 2
$Pr(speciesA|twins) = Pr(twins|speciesA)Pr(speciesA)/Pr(twins)$
$Pr(speciesA|twins) = (0.1*0.5)/(0.5*0.1+0.5*0.2)=0.33$
## Question 3
```{r}
#prior = Pr(A|twins), Pr(B|twins)
prior <- c(0.33,0.66)
#Pr(A|single)
#(0.9*0.5)/((0.9+0.8)/2)
#Pr(B|single)
#(0.8*0.5)/((0.9+0.8)/2)
likelihood <- c(0.53,0.47)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
posterior
```
You can also calculate:
$$Pr(speciesA|single) = Pr(single|speciesA)Pr(speciesA)/Pr(single)$$
Note however, that $Pr(speciesA)$ should be the updated one, given the 1st twins birth. We calculated this above:
$$Pr(speciesA|single) = (0.9*0.33)/(0.9*0.33)/(0.33*0.9+0.66*0.8) = 0.36$$
## Question 4
Prior = both species equally plausible.
Information about the test:
```{r}
df <- data.frame(ActualA=c(0.8,0.35), ActualB=c(0.2,0.65))
row.names(df) <- c("TestedA","TestedB")
kable(df)
```
Using only test result:
```{r}
prior <- c(0.5,0.5)
likelihood <- c(0.8,0.35)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
posterior
```
Using the birthing data (twins then singleton):
```{r}
#use test data above as new prior
prior <- posterior
#calcualted above
likelihood <- c(0.3605442,0.6394558)
unstdPosterior <- prior * likelihood
posterior <- unstdPosterior/sum(unstdPosterior)
posterior
```