-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.sh
174 lines (146 loc) · 6.16 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/bin/bash
# Run `conda activate ms-hgnn` before running this script
pip install .
# ============== Training ==============
# Main Experiment 1: Contact Classification C2
python research/train_classification_msgn.py\
--seed 2\
--logger_project_name main_cls_c2\
--model_type heterogeneous_gnn_c2\
--symmetry_mode MorphSym\
--group_operator_path cfg/mini_cheetah-c2.yaml
# Main Experiment 1: Contact Classification K4
python research/train_classification_msgn.py\
--seed 2\
--logger_project_name main_cls_k4\
--model_type heterogeneous_gnn_k4\
--symmetry_mode MorphSym\
--group_operator_path cfg/mini_cheetah-k4.yaml
# Main Experiment 2: GRF Regression C2
python research/train_regression-grf_msgn.py\
--seed 10\
--logger_project_name main_grf_c2_d=3\
--grf_body_to_world_frame True\
--grf_dimension 3
python research/train_regression-grf_msgn.py\
--seed 42\
--logger_project_name main_grf_c2_d=3\
--grf_body_to_world_frame True\
--grf_dimension 3
python research/train_regression-grf_msgn.py\
--seed 3407\
--logger_project_name main_grf_c2_d=3\
--grf_body_to_world_frame True\
--grf_dimension 3
# 1D GRF
# python research/train_regression-grf_msgn.py\
# --seed 3407\
# --grf_dimension 1\
# --logger_project_name main_grf_c2_d=1
# Main Experiment 3: COM Regression S4
python research/train_regression_com_msgn.py\
--seed 42\
--batch_size 64\
--num_layers 8\
--hidden_size 128\
--lr 0.0012\
--epochs 60\
--logger_project_name com_debug\
--model_type heterogeneous_gnn_s4_com
# Main Experiment 1: Sample Efficiency, Classification K4
python research/train_classification_msgn.py\
--seed 2\
--logger_project_name main_cls_k4\
--model_type heterogeneous_gnn_k4\
--symmetry_mode MorphSym\
--group_operator_path cfg/mini_cheetah-k4.yaml\
--sample_ratio 0.45
# ============== Testing ==============
# # Main Experiment 1: Classification C2
# python research/train_classification_msgn.py\
# --seed 2\
# --logger_project_name main_cls_c2\
# --model_type heterogeneous_gnn_c2\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-c2.yaml
# Main Experiment 1: Classification K4
# python research/train_classification_msgn.py\
# --seed 2\
# --logger_project_name main_cls_k4\
# --model_type heterogeneous_gnn_k4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml
# Main Experiment 2: Regression (GRF)
# python research/evaluator_regression-grf_c2.py
# python research/evaluator_classification_k4.py\
# --MorphSym_version K4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml\
# --path_to_checkpoint models/main_cls_k4/avid-moon-13/epoch=6-val_CE_loss=0.21062-val_F1_Score_Leg_Avg=0.94563.ckpt
# python research/evaluator_classification_k4.py\
# --MorphSym_version K4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml\
# --path_to_checkpoint models/main_cls_k4_sample_eff/zesty-water-5/epoch=4-val_CE_loss=0.37975-val_F1_Score_Leg_Avg=0.88835.ckpt
# python research/evaluator_classification_k4.py\
# --MorphSym_version K4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml\
# --path_to_checkpoint models/main_cls_k4_sample_eff/clean-aardvark-7/epoch=6-val_CE_loss=0.37497-val_F1_Score_Leg_Avg=0.90216.ckpt
# python research/evaluator_classification_k4.py\
# --MorphSym_version K4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml\
# --path_to_checkpoint models/main_cls_k4_sample_eff/worthy-mountain-4/epoch=9-val_CE_loss=0.34174-val_F1_Score_Leg_Avg=0.92367.ckpt
python research/evaluator_classification_k4.py\
--MorphSym_version K4\
--symmetry_mode MorphSym\
--group_operator_path cfg/mini_cheetah-k4.yaml\
--path_to_checkpoint models/main_cls_k4_sample_eff/worthy-mountain-4/epoch=9-val_CE_loss=0.34174-val_F1_Score_Leg_Avg=0.92367.ckpt
# Main Experiment 1: Classification C2
# python research/evaluator_classification_k4.py\
# --MorphSym_version C2\
# --group_operator_path cfg/mini_cheetah-c2.yaml\
# --symmetry_mode MorphSym\
# --path_to_checkpoint models/main_cls_c2/fearless-bush-9/epoch=5-val_CE_loss=0.20732-val_F1_Score_Leg_Avg=0.94922.ckpt
# Main Experiment 2: Regression (GRF) - d=1
# python research/evaluator_regression-grf_c2.py\
# --path_to_checkpoint models/main_grf_c2_d=1/olive-vortex-6/epoch=13-val_MSE_loss=72.31809-val_L1_loss=1.73057.ckpt\
# --test_only_on_z 1\
# --grf_dimension 1
# # Main Experiment 2: Regression (GRF) - d=3
# python research/evaluator_regression-grf_c2.py\
# --path_to_checkpoint models/main_grf_c2_d=3/helpful-gorge-6/epoch=7-val_MSE_loss=54.72873-val_L1_loss=2.28810.ckpt\
# --grf_body_to_world_frame 1\
# --grf_dimension 3
# python research/evaluator_regression-grf_c2.py\
# --path_to_checkpoint models/main_grf_c2_d=3/glowing-snow-7/epoch=16-val_MSE_loss=57.40248-val_L1_loss=2.41434.ckpt\
# --grf_body_to_world_frame 1\
# --grf_dimension 3
# Main Experiment 2: Regression (COM)
# python research/train_regression_com_msgn.py\
# --seed 42\
# --batch_size 64\
# --num_layers 8\
# --hidden_size 128\
# --lr 0.0012\
# --epochs 60\
# --logger_project_name com_debug\
# --model_type heterogeneous_gnn_s4_com
# Main Experiment 3: Sample Efficiency, Classification K4
# python research/train_classification_msgn.py\
# --seed 2\
# --logger_project_name main_cls_k4\
# --model_type heterogeneous_gnn_k4\
# --symmetry_mode MorphSym\
# --group_operator_path cfg/mini_cheetah-k4.yaml\
# --sample_ratio 0.45
# Test Baseline
python research/evaluator_classification_k4.py\
--MorphSym_version C2\
--symmetry_mode MorphSym\
--group_operator_path cfg/mini_cheetah-c2.yaml\
--path_to_checkpoint models/main_cls_c2_sample_eff/summer-donkey-9/epoch=10-val_CE_loss=0.51589-val_F1_Score_Leg_Avg=0.83822.ckpt
# Test GRF Baseline - d=3
python research/evaluator_regression-grf.py\
--path_to_checkpoint models/grf_baseline_mihgnn_d=3/denim-elevator-5/epoch=4-val_MSE_loss=59.96093-val_L1_loss=2.49272.ckpt