-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathllm_perplexity.py
174 lines (142 loc) · 6.76 KB
/
llm_perplexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import tqdm, sys, argparse, os
import numpy as np
from openvino.runtime import Core
from openvino.runtime import Core, Model, Tensor, PartialShape, Type, serialize, opset_utils
from openvino.runtime import opset10 as opset
from openvino.preprocess import PrePostProcessor
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import pipeline.utils
class PPL:
def __init__(self):
self.nll = 0
self.cnt = 0
def __call__(self, all_logits, labels):
'''
all_logits [seq_length, vocab_size]
labels [seq_length]
'''
seq_length = all_logits.shape[0]
for i in range(0, seq_length - 1):
logits = all_logits[i, :]
max_logit = np.amax(logits)
sum_exp = np.sum(np.exp(logits - max_logit))
# logits at time-step i is for predicting token at time-step (i+1)
next_tok = labels[i + 1]
log_softmax_of_tok = (logits[next_tok] - max_logit) - np.log(sum_exp)
self.nll += -log_softmax_of_tok
self.cnt += 1
return np.exp(self.nll / self.cnt)
def __str__(self):
return f"PPL: {np.exp(self.nll / self.cnt):.2f}"
def perplexity_hf(args, text, raw_model_path):
print("loading hf model ...")
import torch
raw_model = AutoModelForCausalLM.from_pretrained(raw_model_path)
tokenizer = AutoTokenizer.from_pretrained(raw_model_path)
print("tokenizing ...")
inputs = tokenizer(text, return_tensors="pt", return_token_type_ids=False)
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
ppl_evaluator = PPL()
progress_bar = tqdm.tqdm(range(0, input_ids.shape[1], 512))
for i0 in progress_bar:
input_ids_chunks = input_ids[:, i0:(i0+512)]
input_ids_chunks[:, 0] = 1
with torch.no_grad():
result = raw_model.forward(input_ids_chunks, labels = input_ids_chunks, return_dict=True)
#print(f"ppl = {torch.exp(result.loss)}")
seq_len = result.logits.shape[1]
ppl_evaluator(result.logits.numpy()[0, seq_len//2:, :], input_ids_chunks.numpy()[0, seq_len//2:])
progress_bar.set_description(f"{ppl_evaluator}")
class OvLLMModel:
def __init__(self, ov_model_path) -> None:
ext_path = None
if sys.platform == 'win32':
ext_path = ".\\custom_ops\\build\\Release\\ov-cpu-llm-experimental.dll"
elif sys.platform == 'linux':
ext_path = "./custom_ops/build/libov-cpu-llm-experimental.so"
else:
print(f"Sample code not supported on platform: {sys.platform}")
exit(1)
core = Core()
custom_opset = opset_utils._get_node_factory()
custom_opset.add_extension(ext_path)
core.add_extension(ext_path)
print("Init OpenVINO model ...")
ov_model = core.read_model(os.path.join(ov_model_path, "openvino.xml"))
# add preprocessor for bf16 kv_cache
self.bf16 = False
if self.bf16:
kv_cache_precision = Type.bf16
ppp = PrePostProcessor(ov_model)
for key in ov_model.inputs:
if "kv_cache" in key.get_any_name() and kv_cache_precision != key.get_element_type():
ppp.input(key.get_any_name()).tensor().set_element_type(kv_cache_precision)
ov_model = ppp.build()
kv_cache_shape = ov_model.input("kv_cache").partial_shape
cos_tab_shape = ov_model.input("cos_tab").partial_shape
# 2*n_layers, B, H, L, S
self.n_layers = kv_cache_shape[0].get_length() // 2
self.n_head = kv_cache_shape[2].get_length()
self.head_size = kv_cache_shape[4].get_length()
self.rotary_dims = cos_tab_shape[1].get_length() * 2 # assumes sin/cos table dims is half of rotary_dims
self.kv_eletype = ov_model.input("kv_cache").get_element_type()
ov_config={"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": 1,
"INFERENCE_PRECISION_HINT" : "bf16" if self.bf16 else "f32",
"CPU_DENORMALS_OPTIMIZATION" : "YES",
"CACHE_DIR" : None}
self.compiled_model = core.compile_model(ov_model, "CPU", ov_config)
def forward(self, input_ids, attention_mask, max_kv_len):
attention_mask = (1.0 - attention_mask) * np.finfo(np.float32).min
batch_size = input_ids.shape[0]
kvcache_shape = [2 * self.n_layers,
batch_size,
self.n_head,
max_kv_len,
self.head_size]
kv_cache = Tensor(self.kv_eletype, kvcache_shape)
# initialize "straight" beams in greedy search
beam_table = np.zeros([batch_size, max_kv_len]).astype("int32")
for b in range(batch_size):
beam_table[b, :] = b
sin_tab, cos_tab = pipeline.utils.create_sinusoidal_positions(max_kv_len, self.rotary_dims)
model_inputs = {"input_ids": input_ids,
"attn_mask": attention_mask,
"kv_cache": kv_cache,
"beam_table": beam_table,
"cos_tab": cos_tab,
"sin_tab": sin_tab
}
return self.compiled_model(model_inputs)
def __str__(self) -> str:
return f"\tn_layers={self.n_layers}, n_head={self.n_head}, head_size={self.head_size}, rotary_dims={self.rotary_dims}"
def perplexity_ov(args, text, ov_model_path):
print("loading ov model ...")
tokenizer = AutoTokenizer.from_pretrained(ov_model_path)
ovmodel = OvLLMModel(ov_model_path)
print(f"tokenizing ...")
inputs = tokenizer(text, return_tensors="np", return_token_type_ids=False)
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
ppl_evaluator = PPL()
progress_bar = tqdm.tqdm(range(0, input_ids.shape[1], 512))
for i0 in progress_bar:
input_ids_chunks = input_ids[:, i0:(i0+512)]
input_ids_chunks[:, 0] = 1
outputs = ovmodel.forward(input_ids_chunks, attention_mask[:, i0:(i0+512)], max_kv_len = 512 + 8)
logits = next(iter(outputs.values()))
seq_len = logits.shape[1]
ppl_evaluator(logits[0, seq_len//2:, :], input_ids_chunks[0, seq_len//2:])
progress_bar.set_description(f"{ppl_evaluator}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f","--prompt-file", type=str, default="./wikitext-2-raw/wiki.test.raw")
parser.add_argument("-hf", type=str, default=None)
parser.add_argument("-ov", type=str, default=None)
args = parser.parse_args()
with open(args.prompt_file) as f:
text = f.read()
if args.ov:
perplexity_ov(args, text, args.ov)
elif args.hf:
perplexity_hf(args, text, args.hf)