-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
234 lines (203 loc) · 11.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import time
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
import torchvision
import numpy as np
import dist
from models import VAR, VQVAE, VectorQuantizer2
from utils.amp_sc import AmpOptimizer
from utils.misc import MetricLogger, TensorboardLogger
Ten = torch.Tensor
FTen = torch.Tensor
ITen = torch.LongTensor
BTen = torch.BoolTensor
class VARTrainer(object):
def __init__(
self, device, patch_nums: Tuple[int, ...], resos: Tuple[int, ...],
vae_local: VQVAE, var_wo_ddp: VAR, var: DDP,
var_opt: AmpOptimizer, label_smooth: float,
):
super(VARTrainer, self).__init__()
self.var, self.vae_local, self.quantize_local = var, vae_local, vae_local.quantizes
self.quantize_local: VectorQuantizer2
self.var_wo_ddp: VAR = var_wo_ddp # after torch.compile
self.var_opt = var_opt
# del self.var_wo_ddp.rng
self.var_wo_ddp.rng = torch.Generator(device=device)
self.label_smooth = label_smooth
self.train_loss = nn.CrossEntropyLoss(label_smoothing=label_smooth, reduction='none')
self.val_loss = nn.CrossEntropyLoss(label_smoothing=0.0, reduction='mean')
self.L = sum(pn * pn for pn in patch_nums)
self.last_l = patch_nums[-1] * patch_nums[-1]
self.loss_weight = torch.ones(1, self.L, device=device) / self.L
self.patch_nums, self.resos = patch_nums, resos
self.begin_ends = []
cur = 0
for i, pn in enumerate(patch_nums):
self.begin_ends.append((cur, cur + pn * pn))
cur += pn*pn
self.prog_it = 0
self.last_prog_si = -1
self.first_prog = True
@torch.no_grad()
def eval_ep(self, ld_val: DataLoader):
tot = 0
L_mean, L_tail, acc_mean, acc_tail = 0, 0, 0, 0
stt = time.time()
training = self.var_wo_ddp.training
self.var_wo_ddp.eval()
for inp_B3HW, label_B in ld_val:
B, V, N_pq = label_B.shape[0], self.vae_local.vocab_size, self.vae_local.product_quant
inp_B3HW = inp_B3HW.to(dist.get_device(), non_blocking=True)
label_B = label_B.to(dist.get_device(), non_blocking=True)
gt_idx_Bl_list = self.vae_local.img_to_idxBl(inp_B3HW)
gt_BL_list = [torch.cat(gt_idx_Bl, dim=1) for gt_idx_Bl in gt_idx_Bl_list]
x_BLCv_wo_first_l: Ten = self.vae_local.idxBl_to_var_input(gt_idx_Bl_list)
self.var_wo_ddp.forward
logits_BLV = self.var_wo_ddp(label_B, x_BLCv_wo_first_l)
L_mean += sum([self.val_loss(logits, gt_BL.view(-1)).item() for logits, gt_BL in
zip(logits_BLV.view(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]) * B / N_pq
L_tail += sum([self.val_loss(logits, gt_BL[:, -self.last_l:].reshape(-1)).item() for logits, gt_BL in
zip(logits_BLV[:, -self.last_l:].reshape(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]) * B / N_pq
acc_mean += sum([(logits.data.argmax(dim=-1) == gt_BL).sum() * (100/gt_BL.shape[1]) for logits, gt_BL in
zip(logits_BLV.chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
acc_tail += sum([(logits.data.argmax(dim=-1)[:, -self.last_l:] == gt_BL[:, -self.last_l:]).sum() * (100 / self.last_l)
for logits, gt_BL in zip(logits_BLV.chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
tot += B
# visualize
class_labels = np.random.choice(1000, 8).tolist()
B, cfg, seed = len(class_labels), 5, 0
label_B = torch.tensor(class_labels, device=dist.get_device())
recon_B3HW = self.var_wo_ddp.autoregressive_infer_cfg(B=B, label_B=label_B, cfg=cfg, top_k=900, top_p=0.95, g_seed=seed, more_smooth=False)
chw = torchvision.utils.make_grid(recon_B3HW, nrow=8, padding=0, pad_value=1.0)
chw = chw.clone().permute(1, 2, 0).mul_(255).cpu().numpy()
self.var_wo_ddp.train(training)
stats = logits_BLV.new_tensor([L_mean, L_tail, acc_mean, acc_tail, tot])
dist.allreduce(stats)
tot = round(stats[-1].item())
stats /= tot
L_mean, L_tail, acc_mean, acc_tail, _ = stats.tolist()
return L_mean, L_tail, acc_mean, acc_tail, tot, time.time()-stt, chw
def train_step(
self, it: int, g_it: int, stepping: bool, metric_lg: MetricLogger, tb_lg: TensorboardLogger,
inp_B3HW: FTen, label_B: Union[ITen, FTen], prog_si: int, prog_wp_it: float, p_drop_factor: float,
) -> Tuple[Optional[Union[Ten, float]], Optional[float]]:
# if progressive training
self.var_wo_ddp.prog_si = prog_si
if self.last_prog_si != prog_si:
if self.last_prog_si != -1: self.first_prog = False
self.last_prog_si = prog_si
self.prog_it = 0
self.prog_it += 1
prog_wp = max(min(self.prog_it / prog_wp_it, 1), 0.01)
if self.first_prog: prog_wp = 1 # no prog warmup at first prog stage, as it's already solved in wp
if prog_si == len(self.patch_nums) - 1: prog_si = -1 # max prog, as if no prog
# forward
B, V, N_pq = label_B.shape[0], self.vae_local.vocab_size, self.vae_local.product_quant
self.var.require_backward_grad_sync = stepping
gt_idx_Bl_list = self.vae_local.img_to_idxBl(inp_B3HW)
gt_BL_list = [torch.cat(gt_idx_Bl, dim=1) for gt_idx_Bl in gt_idx_Bl_list]
x_BLCv_wo_first_l: Ten = self.vae_local.idxBl_to_var_input(gt_idx_Bl_list)
with self.var_opt.amp_ctx:
self.var_wo_ddp.forward
logits_BLV = self.var(label_B, x_BLCv_wo_first_l, p_drop_factor)
# loss = sum([self.train_loss(logits, gt_BL.view(-1)).view(B, -1) for logits, gt_BL in
# zip(logits_BLV.view(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
loss = 0
for l in [self.train_loss(logits, gt_BL.view(-1)).view(B, -1) for logits, gt_BL in
zip(logits_BLV.view(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]:
loss = loss + l
loss = loss / N_pq
if prog_si >= 0: # in progressive training
bg, ed = self.begin_ends[prog_si]
assert logits_BLV.shape[1] == gt_BL.shape[1] == ed
lw = self.loss_weight[:, :ed].clone()
lw[:, bg:ed] *= min(max(prog_wp, 0), 1)
else: # not in progressive training
lw = self.loss_weight
loss = loss.mul(lw).sum(dim=-1).mean()
# backward
grad_norm, scale_log2 = self.var_opt.backward_clip_step(loss=loss, stepping=stepping)
# log
# pred_BL = logits_BLV.data.argmax(dim=-1)
if it == 0 or it in metric_lg.log_iters:
# Lmean = self.val_loss(logits_BLV.data.view(-1, V), gt_BL.view(-1)).item()
Lmean = sum([self.val_loss(logits, gt_BL.view(-1)).item() for logits, gt_BL in
zip(logits_BLV.view(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
# acc_mean = (pred_BL == gt_BL).float().mean().item() * 100
acc_mean = sum([(logits.data.argmax(dim=-1) == gt_BL).float().mean().item() * 100 for logits, gt_BL in
zip(logits_BLV.chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
if prog_si >= 0: # in progressive training
Ltail = acc_tail = -1
else: # not in progressive training
# Ltail = self.val_loss(logits_BLV.data[:, -self.last_l:].reshape(-1, V), gt_BL[:, -self.last_l:].reshape(-1)).item()
Ltail = sum([self.val_loss(logits, gt_BL[:, -self.last_l:].reshape(-1)).item() for logits, gt_BL in
zip(logits_BLV[:, -self.last_l:].reshape(-1, V).chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
# acc_tail = (pred_BL[:, -self.last_l:] == gt_BL[:, -self.last_l:]).float().mean().item() * 100
acc_tail = sum([(logits.data.argmax(dim=-1)[:, -self.last_l:] == gt_BL[:, -self.last_l:]).float().mean().item() * 100
for logits, gt_BL in zip(logits_BLV.chunk(N_pq, dim=-1), gt_BL_list)]) / N_pq
grad_norm = grad_norm.item()
metric_lg.update(Lm=Lmean, Lt=Ltail, Accm=acc_mean, Acct=acc_tail, tnm=grad_norm)
# log to tensorboard
# if g_it == 0 or (g_it + 1) % 500 == 0:
# prob_per_class_is_chosen = pred_BL.view(-1).bincount(minlength=V).float()
# dist.allreduce(prob_per_class_is_chosen)
# prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
# cluster_usage = (prob_per_class_is_chosen > 0.001 / V).float().mean().item() * 100
# if dist.is_master():
# if g_it == 0:
# tb_lg.update(head='AR_iter_loss', z_voc_usage=cluster_usage, step=-10000)
# tb_lg.update(head='AR_iter_loss', z_voc_usage=cluster_usage, step=-1000)
# kw = dict(z_voc_usage=cluster_usage)
# for si, (bg, ed) in enumerate(self.begin_ends):
# if 0 <= prog_si < si: break
# pred, tar = logits_BLV.data[:, bg:ed].reshape(-1, V), gt_BL[:, bg:ed].reshape(-1)
# acc = (pred.argmax(dim=-1) == tar).float().mean().item() * 100
# ce = self.val_loss(pred, tar).item()
# kw[f'acc_{self.resos[si]}'] = acc
# kw[f'L_{self.resos[si]}'] = ce
# tb_lg.update(head='AR_iter_loss', **kw, step=g_it)
# tb_lg.update(head='AR_iter_schedule', prog_a_reso=self.resos[prog_si], prog_si=prog_si, prog_wp=prog_wp, step=g_it)
# self.var_wo_ddp.prog_si = self.vae_local.quantize.prog_si = -1
self.var_wo_ddp.prog_si = -1
return grad_norm, scale_log2
def get_config(self):
return {
'patch_nums': self.patch_nums, 'resos': self.resos,
'label_smooth': self.label_smooth,
'prog_it': self.prog_it, 'last_prog_si': self.last_prog_si, 'first_prog': self.first_prog,
}
def state_dict(self):
state = {'config': self.get_config()}
for k in ('var_wo_ddp', 'vae_local', 'var_opt'):
m = getattr(self, k)
if m is not None:
if hasattr(m, '_orig_mod'):
m = m._orig_mod
state[k] = m.state_dict()
return state
def load_state_dict(self, state, strict=True, skip_vae=False):
for k in ('var_wo_ddp', 'vae_local', 'var_opt'):
if skip_vae and 'vae' in k: continue
m = getattr(self, k)
if m is not None:
if hasattr(m, '_orig_mod'):
m = m._orig_mod
ret = m.load_state_dict(state[k], strict=strict)
if ret is not None:
missing, unexpected = ret
print(f'[VARTrainer.load_state_dict] {k} missing: {missing}')
print(f'[VARTrainer.load_state_dict] {k} unexpected: {unexpected}')
config: dict = state.pop('config', None)
self.prog_it = config.get('prog_it', 0)
self.last_prog_si = config.get('last_prog_si', -1)
self.first_prog = config.get('first_prog', True)
if config is not None:
for k, v in self.get_config().items():
if config.get(k, None) != v:
err = f'[VAR.load_state_dict] config mismatch: this.{k}={v} (ckpt.{k}={config.get(k, None)})'
if strict: raise AttributeError(err)
else: print(err)