-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopts.py
176 lines (162 loc) · 11.5 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
def get_args_parser():
parser = argparse.ArgumentParser('ReferFormer training and inference scripts.', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=5e-5, type=float)
parser.add_argument('--lr_backbone_names', default=['backbone.0'], type=str, nargs='+')
parser.add_argument('--lr_text_encoder', default=1e-5, type=float)
parser.add_argument('--lr_text_encoder_names', default=['text_encoder'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=1.0, type=float)
parser.add_argument('--lr_multi', default=1.0, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--epochs', default=12, type=int)
parser.add_argument('--lr_drop', default=[8, 10], type=int, nargs='+')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
# load the pretrained weights
parser.add_argument('--pretrained_weights', type=str, default=None,
help="Path to the pretrained model.")
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true') # NOTE: must be false
# * Backbone
# ["resnet50", "resnet101", "swin_t_p4w7", "swin_s_p4w7", "swin_b_p4w7", "swin_l_p4w7"]
# ["video_swin_t_p4w7", "video_swin_s_p4w7", "video_swin_b_p4w7"]
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--backbone_pretrained', default=None, type=str,
help="if use swin backbone and train from scratch, the path to the pretrained weights")
parser.add_argument('--use_checkpoint', action='store_true', help='whether use checkpoint for swin/video swin backbone')
parser.add_argument('--dilation', action='store_true', # DC5
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=4, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=4, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_frames', default=5, type=int,
help="Number of clip frames for training")
parser.add_argument('--num_queries', default=5, type=int,
help="Number of query slots, all frames share the same queries")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
parser.add_argument('--pre_norm', action='store_true')
# for text
parser.add_argument('--freeze_text_encoder', action='store_true') # default: False
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
parser.add_argument('--mask_dim', default=256, type=int,
help="Size of the mask embeddings (dimension of the dynamic mask conv)")
parser.add_argument('--controller_layers', default=3, type=int,
help="Dynamic conv layer number")
parser.add_argument('--dynamic_mask_channels', default=8, type=int,
help="Dynamic conv final channel number")
parser.add_argument('--no_rel_coord', dest='rel_coord', action='store_false',
help="Disables relative coordinates")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--set_cost_mask', default=2, type=float,
help="mask coefficient in the matching cost")
parser.add_argument('--set_cost_dice', default=5, type=float,
help="mask coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=2, type=float)
parser.add_argument('--dice_loss_coef', default=5, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
# ['ytvos', 'davis', 'a2d', 'jhmdb', 'refcoco', 'refcoco+', 'refcocog', 'all']
# 'all': using the three ref datasets for pretraining
parser.add_argument('--dataset_file', default='ytvos', help='Dataset name')
parser.add_argument('--coco_path', type=str, default='data/coco')
parser.add_argument('--ytvos_path', type=str, default='data/ref-youtube-vos')
parser.add_argument('--davis_path', type=str, default='data/ref-davis')
parser.add_argument('--a2d_path', type=str, default='data/a2d_sentences')
parser.add_argument('--jhmdb_path', type=str, default='/mnt/data/jhmdb')
parser.add_argument('--max_skip', default=3, type=int, help="max skip frame number")
parser.add_argument('--max_size', default=640, type=int, help="max size for the frame")
parser.add_argument('--binary', action='store_true')
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='output',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=4, type=int)
# test setting
parser.add_argument('--threshold', default=0.5, type=float) # binary threshold for mask
parser.add_argument('--ngpu', default=8, type=int, help='gpu number when inference for ref-ytvos and ref-davis')
parser.add_argument('--split', default='valid', type=str, choices=['valid', 'test'])
parser.add_argument('--visualize', action='store_true', help='whether visualize the masks during inference')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
# additional parameters
parser.add_argument('--fpn_type', default='dual', help='fpn type can be dual, dyn, and default')
parser.add_argument('--val_type', default='', help='validation dataset type for youtube rvos')
parser.add_argument('--as_vos', default=False, help='as semi-supervised vos')
parser.add_argument('--query_feat_dim', default=2048, help='feat_dim of 1/32 visual feature map')
parser.add_argument('--inf_res', default=360, type=int, help='inference size')
parser.add_argument('--text_enc_type', default='distilroberta-base', help='fpn type can be dual, dyn, and default')
parser.add_argument('--use_cycle', action='store_true', help='use cycle consistency')
parser.add_argument('--add_negative', action='store_true', help='add negative sample on gpu 0 for triplet loss')
parser.add_argument('--only_cycle', action='store_true', help='only train cycle consistency part model')
parser.add_argument('--cycle_loss_dist_coef', default=1, type=float)
parser.add_argument('--cycle_loss_angle_coef', default=1, type=float)
parser.add_argument('--cycle_loss_mse_coef', default=0.0, type=float)
parser.add_argument('--cycle_loss_cls_coef', default=1, type=float)
parser.add_argument('--fg_contra_loss_coef', default=1, type=float)
parser.add_argument('--VQ_loss_coef', default=0.5, type=float)
parser.add_argument('--cycle_loss_contrastive_coef', default=0.1, type=float)
parser.add_argument('--loc_loss_coef', default=3, type=float)
parser.add_argument('--lr_anchor_names', default=['negative_anchor'], type=str, nargs='+')
parser.add_argument('--lr_anchor_mult', default=0.1, type=float)
parser.add_argument('--contra_margin', default=0.5, type=float)
parser.add_argument('--is_eval', action='store_true', help='use in eval')
parser.add_argument('--neg_cls', action='store_true', help='add classifier to classify neg samples')
parser.add_argument('--bert_cycle', action='store_true', help='use 768 dim output from bert as pos gt')
parser.add_argument('--mix_query', action='store_true', help='mix pseudo-text and text query to deformable trans')
parser.add_argument('--quantitize_query', action='store_true', help='quantitize text query')
parser.add_argument('--use_fg_contra', action='store_true', help='use fg contra loss')
parser.add_argument('--freeze_quantitizer', action='store_true', help='freeze quantitizer')
parser.add_argument('--pseudo_label_path', default='', help='pseudo label path')
parser.add_argument('--use_cls', action='store_true', help='use neg cls to filter out negative videos')
parser.add_argument('--use_score', action='store_true', help='use score to filter out negative videos')
parser.add_argument('--save_prob', action='store_true', help='save prob map')
parser.add_argument('--segm_frame', default=5, type=int)
parser.add_argument('--demo_exp', default='a big track on the road', help='demo exp')
parser.add_argument('--demo_path', default='demo/demo_examples', help='demo frames folder path')
return parser