forked from wangqingbaidu/Dr.Sure
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance.py
42 lines (38 loc) · 1.54 KB
/
distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: UTF-8 -*-
# Authorized by Vlon Jang
# Created on 2018-01-24
# Blog: www.wangqingbaidu.cn
# Email: wangqingbaidu@gmail.com
# ©2015-2018 All Rights Reserved.
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def check_dim(x, dim):
assert x == dim, 'Dimension is not equal. x=%d, dim=%d' %(x, dim)
def cosine_distance(x, y):
"""Compute cosine distance between two tensor."""
x_shape = x.get_shape()
y_shape = y.get_shape()
check_dim(len(x_shape), 2)
check_dim(len(y_shape), 2)
x_norm = tf.sqrt(tf.reduce_sum(tf.square(x), axis=1))
y_norm = tf.sqrt(tf.reduce_sum(tf.square(y), axis=1))
xy = tf.reduce_sum(tf.multiply(x, y), axis=1)
cos_distance = xy / (x_norm * y_norm)
return cos_distance
def cosine_distance_for_each_y(x, y):
"""Compute cosine distance between two tensor. y's tensor rank - x's tensor rank = 1."""
x_shape = x.get_shape()
y_shape = y.get_shape()
check_dim(len(x_shape), 2)
check_dim(len(y_shape), 3)
batch_size = y_shape[0].value
duplicate_num = y_shape[1].value
assert len(x_shape) + 1 == len(y_shape), "#y(%d) - #x(%d) != 1." %(len(x_shape), len(y_shape))
x_expanded = tf.tile(tf.expand_dims(x, axis=1), [1, duplicate_num, 1])
dis = cosine_distance(tf.reshape(x_expanded, [batch_size * duplicate_num, -1]),
tf.reshape(y, [batch_size * duplicate_num, -1]))
cos_distance = tf.reshape(dis, [batch_size, duplicate_num])
return cos_distance