-
Notifications
You must be signed in to change notification settings - Fork 138
/
lc4.java
65 lines (60 loc) · 2.04 KB
/
lc4.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
package code;
/*
* 4. Median of Two Sorted Arrays
* 题意:两个有序数组,找出中位数,要求复杂度O(logN)
* 难度:Hard
* 分类:Array, Binary Search, Divide and Conquer
* 注意:两个数组长度可能不一样;边际问题
* 复杂度是 O(log(min(m,n)) ,在短的数组上二分查找即可
*/
public class lc4 {
public static void main(String[] args) {
int[] nums1 = {1,2};
int[] nums2 = {3,4};
System.out.println(findMedianSortedArrays(nums1,nums2));
}
public static double findMedianSortedArrays(int[] nums1, int[] nums2) {
int size1 = nums1.length;
int size2 = nums2.length;
if(size1>size2)
return findMedianSortedArrays(nums2,nums1);
int low = 0;
int high = nums1.length;
while(low<=high){// <=别忘了=
int i = (low+high)/2;
int j = (size1+size2+1)/2-i; // 注意+1
if(i>0 && nums1[i-1]>nums2[j]){ //注意判断i是否越界
//need reduce i
high = i-1;
}else if(i<size1 && nums2[j-1]>nums1[i]){ //注意判断i是否越界
//need increase i
low = i+1;
}else{
//find correct i
int l,r;
if(i==0) {
//nums1 没有 l
l = nums2[j-1];
}else if(j==0){
//nums2 没有l,两个数组可能相等
l = nums1[i-1];
} else{
l = Math.max(nums1[i-1],nums2[j-1]);
}
if((size1+size2)%2==1)
return l;
if(i==size1){
//nums1 没有 r
r = nums2[j];
}else if(j==size2){
//nums2 没有 r
r = nums1[i];
}else{
r = Math.min(nums1[i],nums2[j]);
}
return (l+r)*1.0/2;
}
}
return -1;
}
}