-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathlc685.java
55 lines (54 loc) · 1.92 KB
/
lc685.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package code;
/*
* 685. Redundant Connection II
* 题意:一个图,删掉一个边,使其成为一个根树
* 难度:Hard
* 分类:Tree, Depth-first Search, Union Find, Graph
* 思路:要把问题想清楚
* 判断是否有某个节点父节点有两个, 记为e1, e2
* 再判断是否有环
* 4种情况,分别想清楚返回什么
* 自己没想清楚两种情况的交叉,以为判断完第一步就可直接返回
* 如何判断有环,可以利用并查集的思想
* Tips:https://leetcode.com/problems/redundant-connection-ii/discuss/108045/C%2B%2BJava-Union-Find-with-explanation-O(n)
*/
public class lc685 {
public int[] findRedundantDirectedConnection(int[][] edges) {
int[] can1 = {-1, -1};
int[] can2 = {-1, -1};
int[] parent = new int[edges.length + 1];
for (int i = 0; i < edges.length; i++) {
if (parent[edges[i][1]] == 0) {
parent[edges[i][1]] = edges[i][0];
} else {
can2 = new int[] {edges[i][0], edges[i][1]};
can1 = new int[] {parent[edges[i][1]], edges[i][1]};
edges[i][1] = 0;
}
}
for (int i = 0; i < edges.length; i++) {
parent[i] = i;
}
for (int i = 0; i < edges.length; i++) {
if (edges[i][1] == 0) {
continue;
}
int child = edges[i][1], father = edges[i][0];
if (root(parent, father) == child) { //判断father的父节点是不是child
if (can1[0] == -1) {
return edges[i];
}
return can1;
}
parent[child] = father;
}
return can2;
}
int root(int[] parent, int i) {
while (i != parent[i]) { //找到根为止
parent[i] = parent[parent[i]];
i = parent[i];
}
return i;
}
}