forked from patflick/miopen-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.hpp
487 lines (395 loc) · 18.1 KB
/
layers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#ifndef LAYERS_HPP
#define LAYERS_HPP
#include "tensor.hpp"
#include "function.hpp"
struct ConvDesc {
miopenConvolutionDescriptor_t desc;
ConvDesc(int pad_h, int pad_w, int u, int v, int upscalex, int upscaley) {
CHECK_MIO(miopenCreateConvolutionDescriptor(&desc));
CHECK_MIO(miopenInitConvolutionDescriptor(desc, miopenConvolution, pad_h, pad_w, u, v, upscalex, upscaley));
}
// create with padding and stride, default upscale = 1
ConvDesc(int pad_h, int pad_w, int u, int v) : ConvDesc(pad_h, pad_w, u, v, 1, 1) {
}
// default stride = 1, upscale = 1
ConvDesc(int pad_h, int pad_w) : ConvDesc(pad_h, pad_w, 1, 1, 1, 1) {
}
// default pad = 0, stride = 1, upscale = 1
ConvDesc() : ConvDesc(0, 0, 1, 1, 1, 1) {
}
~ConvDesc() {
CHECK_MIO(miopenDestroyConvolutionDescriptor(desc));
}
};
// parameters for a 2D convolutional layer
struct ConvLayerDesc {
int batch_size;
int height;
int width;
int channels_in;
int channels_out;
int kernel_size;
int padding;
int stride;
};
static Dim getConvOutputDim(int padding, int stride, const TensorDesc& input, const TensorDesc& weights) {
int n, c, h, w;
ConvDesc d(padding, padding, stride, stride, 1, 1);
CHECK_MIO(miopenGetConvolutionForwardOutputDim(d.desc, input.desc, weights.desc, &n, &c, &h, &w));
return Dim(n, c, h, w);
}
struct ConvLayer : public ConvDesc, public ConvLayerDesc, public Layer {
Tensor weights;
Tensor dweights;
const Tensor* input_ref;
// algorithm selection:
miopenConvFwdAlgorithm_t fwd_algo;
miopenConvBwdWeightsAlgorithm_t bwd_weights_algo;
miopenConvBwdDataAlgorithm_t bwd_data_algo;
virtual std::ostream& write_name(std::ostream& os) const {
//return os << "Conv(" << kernel_size << "x" << kernel_size << ")";
return os << "Conv(" << kernel_size << "x" << kernel_size << ",pad=" << padding << ",s=" << stride << ")";
}
ConvLayer(const TensorDesc& input_dims, int channels_out, int kernel_size, int padding, int stride)
: ConvDesc(padding, padding, stride, stride, 1, 1),
ConvLayerDesc({input_dims.n, input_dims.h, input_dims.w, input_dims.c, channels_out, kernel_size, padding, stride}),
Layer((Dim&)input_dims, getConvOutputDim(padding, stride, input_dims, TensorDesc(channels_out, input_dims.c, kernel_size, kernel_size))),
weights(channels_out, input_dims.c, kernel_size, kernel_size),
dweights(channels_out, input_dims.c, kernel_size, kernel_size)
{
}
/* default stride = 1 */
ConvLayer(const TensorDesc& input_dims, int channels_out, int kernel_size, int padding)
: ConvLayer(input_dims, channels_out, kernel_size, padding, 1) {}
/* default padding = 0, stride = 1 */
ConvLayer(const TensorDesc& input_dims, int channels_out, int kernel_size)
: ConvLayer(input_dims, channels_out, kernel_size, 0, 1) {}
/* construct via conv parameters */
ConvLayer(const ConvLayerDesc& l)
: ConvLayer(TensorDesc(l.batch_size, l.channels_in, l.height, l.width), l.channels_out, l.kernel_size, l.padding, l.stride) {}
// estimate the number of muliplications for a direct implementation
double num_flops() {
return batch_size * 1.0 * height * width * channels_in * channels_out * kernel_size * kernel_size;
}
void init_forward(const Tensor& input, Tensor& output) override {
size_t fwd_workspace_size;
CHECK_MIO(miopenConvolutionForwardGetWorkSpaceSize(mio::handle(), weights.desc, input.desc, this->desc, output.desc, &fwd_workspace_size));
DEBUG("Init fwd " << *this << " req workspace: " << fwd_workspace_size);
DevBuffer& buffer = WorkSpace::get(fwd_workspace_size);
// find best algo, and benchmark!
miopenConvAlgoPerf_t perfs[4];
int returned_algos;
CHECK_MIO(miopenFindConvolutionForwardAlgorithm(mio::handle(), input.desc, input.data, weights.desc, weights.data, this->desc, output.desc, output.data, 4, &returned_algos, perfs, buffer.data, fwd_workspace_size, false));
INFO("\tMIOpen Found " << returned_algos << " fwd algorithms, choosing " << perfs[0].fwd_algo << ": ");
for (int i = 0; i < returned_algos; ++i) {
INFO("\t\t" << i << ") " << perfs[i].fwd_algo << " - time: " << perfs[i].time << ", Memory: " << perfs[i].memory);
}
fwd_algo = perfs[0].fwd_algo;
// randomly initialize weights
this->weights.uniform();
}
void find_bwd_data_algo(const Tensor& doutput, Tensor& dinput) {
size_t bwd_data_workspace_size;
CHECK_MIO(miopenConvolutionBackwardDataGetWorkSpaceSize(mio::handle(), doutput.desc, weights.desc, this->desc, dinput.desc, &bwd_data_workspace_size));
DEBUG("Init bwd_data " << *this << " req workspace: " << bwd_data_workspace_size);
DevBuffer& buffer = WorkSpace::get(bwd_data_workspace_size);
// find best algo, and benchmark!
miopenConvAlgoPerf_t perfs[5];
int returned_algos;
CHECK_MIO(miopenFindConvolutionBackwardDataAlgorithm(mio::handle(), doutput.desc, doutput.data, weights.desc, weights.data, this->desc, dinput.desc, dinput.data, 5, &returned_algos, perfs, buffer.data, bwd_data_workspace_size, false));
INFO("\tMIOpen Found " << returned_algos << " bwd_data algorithms, choosing " << perfs[0].fwd_algo << ": ");
for (int i = 0; i < returned_algos; ++i) {
INFO("\t\t" << i << ") " << perfs[i].fwd_algo << " - time: " << perfs[i].time << ", Memory: " << perfs[i].memory);
}
bwd_data_algo = perfs[0].bwd_data_algo;
}
void find_bwd_weights_algo(const Tensor& doutput, Tensor& input) {
size_t bwd_weights_workspace_size;
CHECK_MIO(miopenConvolutionBackwardWeightsGetWorkSpaceSize(mio::handle(), doutput.desc, input.desc, this->desc, weights.desc, &bwd_weights_workspace_size));
DEBUG("Init bwd_weights " << *this << " req workspace: " << bwd_weights_workspace_size);
DevBuffer& buffer = WorkSpace::get(bwd_weights_workspace_size);
// find best algo, and benchmark!
miopenConvAlgoPerf_t perfs[5];
int returned_algos;
CHECK_MIO(miopenFindConvolutionBackwardWeightsAlgorithm(mio::handle(), doutput.desc, doutput.data, input.desc, input.data, this->desc, dweights.desc, dweights.data, 5, &returned_algos, perfs, buffer.data, bwd_weights_workspace_size, false));
INFO("\tMIOpen Found " << returned_algos << " bwd_weights algorithms, choosing " << perfs[0].fwd_algo << ": ");
for (int i = 0; i < returned_algos; ++i) {
INFO("\t\t" << i << ") " << perfs[i].fwd_algo << " - time: " << perfs[i].time << ", Memory: " << perfs[i].memory);
}
bwd_weights_algo = perfs[0].bwd_weights_algo;
}
void init_backward(const Tensor& doutput, Tensor& dinput) override {
find_bwd_data_algo(doutput, dinput);
find_bwd_weights_algo(doutput, dinput);
}
void forward(const Tensor& input, Tensor& output) override {
float alpha = 1.f;
float beta = 0.f;
DevBuffer& buffer = WorkSpace::get();
CHECK_MIO(miopenConvolutionForward(mio::handle(), &alpha, input.desc, input.data, weights.desc, weights.data, this->desc, fwd_algo, &beta, output.desc, output.data, buffer.data, buffer.size));
// save for backward
input_ref = &input;
}
void backward(const Tensor& doutput, Tensor& dinput) override {
float alpha = 1.f;
float beta = 0.f;
DevBuffer& buffer = WorkSpace::get();
CHECK_MIO(miopenConvolutionBackwardData(mio::handle(), &alpha, doutput.desc, doutput.data, weights.desc, weights.data, this->desc, bwd_data_algo, &beta, dinput.desc, dinput.data, buffer.data, buffer.size));
CHECK_MIO(miopenConvolutionBackwardWeights(mio::handle(), &alpha, doutput.desc, doutput.data, input_ref->desc, input_ref->data, this->desc, bwd_weights_algo, &beta, dweights.desc, dweights.data, buffer.data, buffer.size));
}
};
struct PoolingLayer : public Layer {
miopenPoolingMode_t pool_mode;
miopenPoolingDescriptor_t desc;
// needed for backward: original input, original output, indeces (as workspace)
DevBuffer indeces_buf;
const Tensor* input;
const Tensor* output;
int kernel_size, padding, stride;
static Dim getOutputDim(const TensorDesc& input, int kernel_size, int padding, int stride, miopenPoolingMode_t pool_mode) {
int n, c, h, w;
miopenPoolingDescriptor_t pool_desc;
CHECK_MIO(miopenCreatePoolingDescriptor(&pool_desc));
CHECK_MIO(miopenSet2dPoolingDescriptor(pool_desc, pool_mode, kernel_size, kernel_size, padding, padding, stride, stride));
CHECK_MIO(miopenGetPoolingForwardOutputDim(pool_desc, input.desc, &n, &c, &h, &w));
CHECK_MIO(miopenDestroyPoolingDescriptor(pool_desc));
return Dim(n, c, h, w);
}
virtual std::ostream& write_name(std::ostream& os) const override {
if (pool_mode == miopenPoolingMax)
os << "MaxPool(";
else
os << "AvgPool(";
return os << kernel_size << "x" << kernel_size << ")";
}
PoolingLayer(const TensorDesc& input_dim, int kernel_size, int padding, int stride, miopenPoolingMode_t pool_mode)
: Layer((Dim&)input_dim, PoolingLayer::getOutputDim(input_dim, kernel_size, padding, stride, pool_mode)),
pool_mode(pool_mode),
kernel_size(kernel_size), padding(padding), stride(stride) {
CHECK_MIO(miopenCreatePoolingDescriptor(&desc));
CHECK_MIO(miopenSet2dPoolingDescriptor(desc, pool_mode, kernel_size, kernel_size, padding, padding, stride, stride));
}
~PoolingLayer() {
CHECK_MIO(miopenDestroyPoolingDescriptor(desc));
}
virtual void init_forward(const Tensor&, Tensor&) override {
size_t size;
CHECK_MIO(miopenPoolingGetWorkSpaceSize(output_desc.desc, &size));
indeces_buf = DevBuffer(size);
}
virtual void forward(const Tensor& input, Tensor& output) override {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenPoolingForward(mio::handle(), desc, &alpha, input.desc, input.data, &beta, output.desc, output.data, true, indeces_buf.data, indeces_buf.size));
// save for backward
this->input = &input;
this->output = &output;
}
virtual void backward(const Tensor& doutput, Tensor& dinput) override {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenPoolingBackward(mio::handle(), desc, &alpha, getOutputDesc().desc, output->data, doutput.desc, doutput.data, getInputDesc().desc, input->data, &beta, dinput.desc, dinput.data, indeces_buf.data));
}
};
struct MaxPool : public PoolingLayer {
MaxPool(const TensorDesc& input_dim, int kernel_size, int padding, int stride)
: PoolingLayer(input_dim, kernel_size, padding, stride, miopenPoolingMax) {}
};
struct AvgPool : public PoolingLayer {
AvgPool(const TensorDesc& input_dim, int kernel_size, int padding, int stride)
: PoolingLayer(input_dim, kernel_size, padding, stride, miopenPoolingAverage) {}
};
struct ReLU : public Layer {
miopenActivationDescriptor_t desc;
const Tensor* input_ref;
const Tensor* output_ref;
virtual std::ostream& write_name(std::ostream& os) const {
return os << "ReLU()";
}
ReLU(const TensorDesc& input_dim) : Layer(input_dim, input_dim) {
CHECK_MIO(miopenCreateActivationDescriptor(&desc));
CHECK_MIO(miopenSetActivationDescriptor(desc, miopenActivationRELU, 0.0, 0.0, 1.0));
}
~ReLU() {
CHECK_MIO(miopenDestroyActivationDescriptor(desc));
}
void forward(const Tensor& input, Tensor& output) {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenActivationForward(mio::handle(), desc, &alpha, input.desc, input.data, &beta, output.desc, output.data));
// save for backward
this->input_ref = &input;
this->output_ref = &output;
}
void backward(const Tensor& doutput, Tensor& dinput) {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenActivationBackward(mio::handle(), desc, &alpha, output_ref->desc, output_ref->data, doutput.desc, doutput.data, input_ref->desc, input_ref->data, &beta, dinput.desc, dinput.data));
}
};
void mm_blas(const Tensor& A, bool transA, const Tensor& B, bool transB, Tensor& C) {
assert(A.h == 1 && A.w == 1);
assert(B.h == 1 && B.w == 1);
assert(C.h == 1 && C.w == 1);
int M = transA ? A.c : A.n;
int K = transA ? A.n : A.c;
int N = transB ? B.n : B.c;
assert(transB ? K == B.c : K == B.n);
assert(C.n == M && C.c == N);
float alpha = 1.f;
float beta = 0.f;
int lda = A.c;
int ldb = B.c;
int ldc = C.c;
hipblasHandle_t blas_handle;
hipblasCreate(&blas_handle);
hipblasOperation_t opA = transA ? HIPBLAS_OP_T : HIPBLAS_OP_N;
hipblasOperation_t opB = transB ? HIPBLAS_OP_T : HIPBLAS_OP_N;
// call Sgemm with A<->B swapped (since we have rowmaj, but blas expects colmajor)
hipblasStatus_t err = hipblasSgemm(blas_handle, opB, opA, N, M, K, &alpha, (const float*)B.data, ldb, (const float*)A.data, lda, &beta, (float*)C.data, ldc);
assert(err == 0);
}
// (batch_size * size) -> (batch_size * size)
struct Linear : public Layer {
int batch_size;
int in_size;
int out_size;
Tensor weights; // dim (out_channels, in_channels, 1, 1)
Tensor dweights;
const Tensor* input_ref;
virtual std::ostream& write_name(std::ostream& os) const {
return os << "Linear(" << in_size << "," << out_size << ")";
}
Linear(const TensorDesc& input_dim, int out_size)
: Layer(input_dim, TensorDesc(input_dim.n, out_size, 1, 1)),
batch_size(input_dim.n),
in_size(input_dim.c * input_dim.h * input_dim.w),
out_size(out_size),
weights(out_size, in_size, 1, 1),
dweights(out_size, in_size, 1, 1)
{
}
void init_forward(const Tensor& input, Tensor& output) override {
// randomly initialize weights
this->weights.uniform();
}
void forward(const Tensor& input, Tensor& output) {
assert(batch_size == input.n);
assert(batch_size == output.n);
assert(out_size = output.c);
assert(in_size == input.c * input.h * input.w);
mm_blas(input, false, weights, true, output); // O <- I * W^T
input_ref = &input;
}
void backward(const Tensor& doutput, Tensor& dinput) {
// two MMs
mm_blas(doutput, true, *input_ref, false, dweights); // dW <- dO^T * I
mm_blas(doutput, false, weights, false, dinput); // dI <- dO * W
}
};
struct BatchNorm : public Layer {
// size of internal tensors (spatial: 1C11, per activation: 1CHW)
miopenBatchNormMode_t bn_mode;
TensorDesc bn_dim;
Tensor scale;
Tensor dscale;
Tensor bias;
Tensor dbias;
double exp;
Tensor running_mean;
Tensor running_var;
double epsilon;
Tensor saved_mean; // saved mean for backward
Tensor saved_ivar; // saved inverse variance for backward
const Tensor* input_ref; // save reference to input for backward pass
static TensorDesc get_bn_dim(const TensorDesc& input_dim, miopenBatchNormMode_t bn_mode) {
TensorDesc bn(0,0,0,0);
CHECK_MIO(miopenDeriveBNTensorDescriptor(bn.desc, input_dim.desc, bn_mode));
bn.update_get();
return bn;
}
BatchNorm(const TensorDesc& input_dim, miopenBatchNormMode_t bn_mode=miopenBNSpatial, double eps = 1e-05, double momentum = 0.1)
: Layer(input_dim, input_dim),
bn_mode(bn_mode),
bn_dim(get_bn_dim(input_dim, bn_mode)),
scale(bn_dim),
dscale(bn_dim),
bias(bn_dim),
dbias(bn_dim),
exp(momentum),
running_mean(bn_dim),
running_var(bn_dim),
epsilon(eps),
saved_mean(bn_dim),
saved_ivar(bn_dim)
{
}
virtual std::ostream& write_name(std::ostream& os) const {
return os << "BatchNorm()";
}
void forward(const Tensor& input, Tensor& output) {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenBatchNormalizationForwardTraining(mio::handle(),
bn_mode,
&alpha,
&beta,
input.desc,
input.data,
output.desc,
output.data,
bn_dim.desc,
scale.data,
bias.data,
exp,
running_mean.data,
running_var.data,
epsilon,
saved_mean.data,
saved_ivar.data));
input_ref = &input;
}
void backward(const Tensor& doutput, Tensor& dinput) {
float alpha = 1.f;
float beta = 0.f;
CHECK_MIO(miopenBatchNormalizationBackward(mio::handle(),
bn_mode,
&alpha,
&beta,
&alpha,
&beta,
input_ref->desc,
input_ref->data,
doutput.desc,
doutput.data,
dinput.desc,
dinput.data,
bn_dim.desc,
scale.data,
dscale.data,
dbias.data,
epsilon,
saved_mean.data,
saved_ivar.data));
}
};
struct Reshape : public Layer {
Reshape(const TensorDesc& input_dim, int n, int c, int h, int w)
: Layer(input_dim, TensorDesc(n, c, h, w)) {
assert(input_dim.n == n);
assert(input_dim.c * input_dim.h * input_dim.w == c*h*w);
}
void init_forward(const Tensor& input, Tensor& output) override {
output = input.viewAs(getOutputDesc());
}
void forward(const Tensor& input, Tensor& output) override {
output = input.viewAs(getOutputDesc());
}
void init_backward(const Tensor& doutput, Tensor& dinput) override {
dinput = doutput.viewAs(getInputDesc());
}
void backward(const Tensor& doutput, Tensor& dinput) override {
dinput = doutput.viewAs(getInputDesc());
}
};
#endif // LAYERS_HPP