-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy paththu_classification.py
675 lines (563 loc) · 25.2 KB
/
thu_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# encoding=utf-8
"""
基于清华大学语料库的中文文本分类
Author:MaCan
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import codecs
import pickle
import numpy as np
import tensorflow as tf
import sys
# sys.path.append('..')
# from bert_base.server.helper import get_logger
from bert_base.bert import modeling
from bert_base.bert import optimization
from bert_base.bert import tokenization
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
if os.name == 'nt':
bert_path = 'C:\迅雷下载\chinese_L-12_H-768_A-12'
root_path = r'C:\workspace\python\BERT_Base'
else:
bert_path = '/home/macan/ml/data/chinese_L-12_H-768_A-12'
root_path = '/home/macan/ml/workspace/BERT_Base2'
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string("data_dir", os.path.join(os.path.join(root_path, 'data'), 'classification'),
"The input data dir. Should contain the .tsv files (or other data files) for the task.")
flags.DEFINE_string(
"bert_config_file", os.path.join(bert_path, 'bert_config.json'),
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("task_name", None, "The name of the task to train.")
flags.DEFINE_string("vocab_file", os.path.join(bert_path, 'vocab.txt'),
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", os.path.join(os.path.join(root_path, 'output'), 'classification'),
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"init_checkpoint", os.path.join(bert_path, 'bert_model.ckpt'),
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 202,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool('clean', True, 'remove the files which created by last training')
flags.DEFINE_bool("do_train", True, "Whether to run training.")
flags.DEFINE_bool("do_eval", True, "Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict", True,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float('dropout_keep_prob', 0.5, 'dropout probability')
flags.DEFINE_float("num_train_epochs", 5.0,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps",500,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer('save_summary_steps', 500, 'summary steps')
# logger = get_logger(os.path.join(FLAGS.output_dir, 'c.log'))
import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class RestoreHook(tf.train.SessionRunHook):
def __init__(self, init_fn):
self.init_fn = init_fn
def after_create_session(self, session, coord=None):
if session.run(tf.train.get_or_create_global_step()) == 0:
self.init_fn(session)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with codecs.open(input_file, "r", encoding='utf-8') as f:
lines = []
for line in f:
line = line.strip()
if line == '':
continue
line = line.split('__\t')
if len(line) == 2:
line[0] = line[0].replace('__', '')
lines.append(line)
return lines
class ThuProcessor(DataProcessor):
"""Processor for the Thu data set."""
def __init__(self):
self.labels = set()
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.txt")), 'train')
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.txt")), 'dev')
def get_test_examples(self, data_dir):
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.txt")), 'test')
def get_labels(self):
"""在读取数据的时候,自动获取类别个数"""
if not os.path.exists(os.path.join(FLAGS.output_dir, 'label_list.pkl')):
with codecs.open(os.path.join(FLAGS.output_dir, 'label_list.pkl'), 'wb') as fd:
pickle.dump(self.labels, fd)
else:
with codecs.open(os.path.join(FLAGS.output_dir, 'label_list.pkl'), 'rb') as fd:
labels = pickle.load(fd)
if len(labels) > len(self.labels):
self.labels = labels
return list(self.labels)
def _create_examples(self, lines, set_type):
examples = []
np.random.shuffle(lines)
for i, line in enumerate(lines):
guid = '%s-%s' %(set_type, i)
# if set_type == 'test':
# text_a = tokenization.convert_to_unicode(line[1])
# label = '0'
# else:
# text_a = tokenization.convert_to_unicode(line[1])
# label = tokenization.convert_to_unicode(line[0])
# self.labels.add(label)
text_a = tokenization.convert_to_unicode(line[1])
label = tokenization.convert_to_unicode(line[0])
self.labels.add(label)
examples.append(
InputExample(guid=guid, text_a=text_a, label=label, text_b=None)
)
return examples
def conver_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode):
"""
将一个训练样本转化为InputFeature,其中进行字符seg并且index化,和label的index转化
:param ex_index:
:param example:
:param label_list:
:param max_seq_length:
:param tokenizer:
:return:
"""
# 1. 构建label->id的映射
label_map = {}
if os.path.exists(os.path.join(FLAGS.output_dir, 'label2id.pkl')):
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'rb') as fd:
label_map = pickle.load(fd)
else:
for i, label in enumerate(label_list):
label_map[label] = i
with codecs.open(os.path.join(FLAGS.output_dir, 'label2id.pkl'), 'wb') as fd:
pickle.dump(label_map, fd)
# 不考虑seq pair 分类的情况
tokens_a = tokenizer.tokenize(example.text_a)
# 截断,因为有句首和句尾的标识符
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length-2)]
tokens = []
segment_ids = []
tokens.append('[CLS]')
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append('[SEP]')
segment_ids.append(0)
#将字符转化为id形式
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1]*len(input_ids)
#补全到max_seg_length
while len(input_ids) < max_seq_length:
input_ids.append(0)
segment_ids.append(0)
input_mask.append(0)
if example.label is None:
label_id = -1
else:
label_id = label_map[example.label]
if ex_index < 2 and mode in ['train', 'dev']:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)
return feature
def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file, mode):
"""
将训练文件转化特征后,存储为tf_record格式,用于模型的读取
:param examples:
:param label_list:
:param max_seq_length:
:param tokenizer:
:param output_file:
:return:
"""
writer = tf.python_io.TFRecordWriter(path=output_file)
# 将每一个样本转化为idx特征,封装到map中后进行序列化存储为record
for ex_index, example in enumerate(examples):
if ex_index % 10000 == 0:
logger.info('Writing example %d of %d' %(ex_index, len(examples)))
feature = conver_single_example(ex_index, example, label_list, max_seq_length, tokenizer, mode)
# 将输入数据转化为64位int 的list,这是必须的
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features['input_ids'] = create_int_feature(feature.input_ids)
features['input_mask'] = create_int_feature(feature.input_mask)
features['segment_ids'] = create_int_feature(feature.segment_ids)
features['label_ids'] = create_int_feature([feature.label_id])
# 转化为Example 协议内存块
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
def file_based_input_fn_builder(input_file, seq_length, num_label, is_training, drop_remainder):
"""
:param input_file:
:param seq_length:
:param is_training:
:param drop_remainder: 是否丢弃较小的batch
:return:
"""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_feature):
# 解析一个record中的数据
example = tf.parse_single_example(record, name_to_feature)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""
模型输入函数
:param params:
:return:
"""
batch_size = params['batch_size']
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=200)
# tf.data.experimental.map_and_batch will be deprecated, the replace methods like bellow
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
# d = d.apply(lambda record: _decode_record(record, name_to_features))
# d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
return d
return input_fn
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels):
"""
:param bert_config:
:param is_training:
:param input_ids:
:param input_mask:
:param segment_ids:
:param labels:
:param num_labels:
:param use_one_hot_embedding:
:return:
"""
# 通过传入的训练数据,进行representation
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
)
embedding_layer = model.get_sequence_output()
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
# model = CNN_Classification(embedding_chars=embedding_layer,
# labels=labels,
# num_tags=num_labels,
# sequence_length=FLAGS.max_seq_length,
# embedding_dims=embedding_layer.shape[-1].value,
# vocab_size=0,
# filter_sizes=[3, 4, 5],
# num_filters=3,
# dropout_keep_prob=FLAGS.dropout_keep_prob,
# l2_reg_lambda=0.001)
# loss, predictions, probabilities = model.add_cnn_layer()
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps,
num_warmup_steps):
"""
:param bert_config:
:param num_labels:
:param init_checkpoint:
:param learning_rate:
:param num_train_steps:
:param num_warmup_steps:
:param use_one_hot_embeddings:
:return:
"""
def model_fn(features, labels, mode, params):
logger.info("*** Features ***")
for name in sorted(features.keys()):
logger.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, probabilities) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels)
# resort variable from checkpoint file to init current graph
tvars = tf.trainable_variables()
initialized_variable_names = {}
init_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names) = \
modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
#variables_to_restore = tf.contrib.framework.get_model_variables()
#init_fn = tf.contrib.framework.\
# assign_from_checkpoint_fn(init_checkpoint,
# variables_to_restore,
# ignore_missing_vars=True)
# 打印变量名称
logger.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
logger.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op
)
# training_hooks=[RestoreHook(init_fn)])
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
loss = tf.metrics.mean(per_example_loss)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = metric_fn(per_example_loss, label_ids, logits)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=eval_metrics
#evaluation_hooks=[RestoreHook(init_fn)]
)
else:
output_spec = tf.estimator.EstimatorSpec(
mode=mode, predictions=probabilities)
return output_spec
return model_fn
def main(_):
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
processor = ThuProcessor()
#定义分词器
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
# estimator 运行参数
run_config = tf.estimator.RunConfig(
model_dir=FLAGS.output_dir,
save_summary_steps=FLAGS.save_summary_steps,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max=5,
log_step_count_steps=500,
session_config=tf.ConfigProto(log_device_placement=True)
#session_config=tf.ConfigProto(log_device_placement=True,
# device_count={'GPU': 1}))
)
train_examples = None
num_train_steps = None
num_warmup_steps = None
if FLAGS.do_train:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int(
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
# get_labels() must be called after get_train_examoles or other examples
label_list = processor.get_labels()
logger.info('************ label_list=', ' '.join(label_list))
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps)
# params是一个dict 里面的key是model_fn 里面用到的参数名称,value是对应的数据
params = {
'batch_size': FLAGS.train_batch_size,
}
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params=params,
)
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file, 'train')
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", FLAGS.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
num_label=len(label_list),
is_training=True,
drop_remainder=True)
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
if FLAGS.do_eval:
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file, 'eval')
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
num_label=len(label_list),
is_training=False,
drop_remainder=False)
result = estimator.evaluate(input_fn=eval_input_fn)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_predict:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
file_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file, 'test')
logger.info("***** Running prediction*****")
logger.info(" Num examples = %d", len(predict_examples))
logger.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
num_label=len(label_list),
is_training=False,
drop_remainder=False)
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.txt")
with tf.gfile.GFile(output_predict_file, "w") as writer:
logger.info("***** Predict results *****")
for prediction in result:
output_line = "\t".join(
str(class_probability) for class_probability in prediction) + "\n"
writer.write(output_line)
def load_data():
processer = ThuProcessor()
example = processer.get_train_examples(FLAGS.data_dir)
print()
if __name__ == "__main__":
# flags.mark_flag_as_required("data_dir")
# flags.mark_flag_as_required("vocab_file")
# flags.mark_flag_as_required("bert_config_file")
# flags.mark_flag_as_required("output_dir")
tf.app.run()
# load_data()