-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapplyfilter.py
56 lines (47 loc) · 1.84 KB
/
applyfilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""mutant - MUlti Temporal ANalysis Tool
begin : 2014/10/15
copyright : (c) 2014- by Werner Macho
email : werner.macho@gmail.com
.. note:: This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
"""
from builtins import range
from builtins import object
from scipy.signal import savgol_filter
import numpy as np
__author__ = 'werner.macho@gmail.com'
__date__ = '2014/06/16'
__copyright__ = 'Copyright 2014, Werner Macho'
class ApplyFilter(object):
def __init__(self, parent, canvas):
self.parent = parent
self.canvas = canvas
def smooth(self, orig_x, orig_y,window=9,polyorder=3,perc=75,p_window=5):
try:
new_x = orig_x
#new_y = medfilt(orig_y,p_window)
new_y =[]
for i in range(0,len(orig_x),p_window):
y_subset = orig_y[i:i+p_window]
pc = np.percentile(y_subset,perc)
y_subset = [x if x>pc else pc for x in y_subset]
new_y = new_y+y_subset
#new_y = wiener(orig_y,mysize=window,noise=polyorder)
new_y = savgol_filter(new_y, window_length=window, polyorder=polyorder)
except Exception as e:
print(e)
new_x = []
new_y = []
for i in range(3, len(orig_x)-3):
new_x.append(orig_x[i])
try:
new_y.append((orig_y[i-3] + orig_y[i-2] + orig_y[i-1] + orig_y[i] + orig_y[i+1]+ orig_y[i+2]+ orig_y[i+3]) / 7.0)
except TypeError:
new_y.append(None)
return new_x, new_y
def whittaker(self, orig_x, orig_y):
new_x = []
new_y = []
return