-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
181 lines (142 loc) · 5.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Copyright (c) 2022 Magdalena Fuentes, Bea Steers, Luca Bondi(Robert Bosch GmbH), Julia Wilkins
All rights reserved.
This source code is licensed under the BSD-3-Clause license found in the
LICENSE file in the root directory of this source tree.
"""
import cv2
import librosa
import numpy as np
import pandas as pd
import librosa.display
from pathlib import Path
from itertools import cycle
import matplotlib.pyplot as plt
from project_paths import checkpoints_folder
def get_weights_path(config_name: str, epoch: int = None, metric: str = None) -> (Path,int,str):
"""
Get weights path for a specific configuration
Args:
config_name: configuration name, i.e. subfolder name of checkpoint_folder
epoch: epoch number, as from history.csv
metric: select epoch based on metric
Returns:
(Path to checkpoint, epoch, mode)
"""
if epoch is None and metric is None:
raise ValueError('Either epoch or metric must be provided')
checkpoint_dir = checkpoints_folder.joinpath(config_name)
history_path = checkpoint_dir.joinpath('history.csv')
# Determine prediction epoch
if epoch is None:
history = pd.read_csv(history_path)
if metric not in history:
raise ValueError(f'{metric} not found in history. Valid values for this model are: {list(history.columns)}')
mode = 'min' if 'loss' in metric else 'max'
idx = history[metric].argmax() if mode == 'max' else history[metric].argmin()
epoch = history['epoch'][idx]
model_paths = list(checkpoint_dir.glob(f'epoch_{epoch:04d}.h5'))
if len(model_paths):
model_path = model_paths[-1]
else:
model_path = checkpoint_dir.joinpath(f'best_{metric}.h5')
else:
model_path = list(checkpoint_dir.glob(f'epoch_{epoch:04d}.h5'))[-1]
mode = None
return model_path, epoch, mode
# Viz utils
# For loading visual annotations
FPS = 2
COLUMNS = ['frame_id', 'track_id', 'x', 'y', 'w', 'h', 'not ignored', 'class_id', 'visibility']
# For visualizing bboxes
COLORS = [
(31, 119, 180),
(255, 127, 14),
(44, 160, 44),
(214, 39, 40),
(148, 103, 189),
(140, 86, 75),
(227, 119, 194),
(127, 127, 127),
(188, 189, 34),
(23, 190, 207),
]
INVISIBLE = 255, 255, 255
IS_ONE_BASED = False
LABELS_PERIOD = 0.5
CLASSES = ['bus', 'car', 'motorbike', 'offscreen', 'truck']
class Cycled(dict):
def __init__(self, available, *a, **kw):
self.available = available
super().__init__(*a, **kw)
def __missing__(self, key):
value = self[key] = self.available[len(self) % len(self.available)]
return value
def norm_col(color_tuple, max_col=255):
return tuple(i / max_col for i in color_tuple)
colors_ = Cycled(COLORS)
shift = 2
COLOR_BARS = {cl: norm_col(co) for cl, co in zip(CLASSES, COLORS[shift:len(CLASSES) + shift])}
def draw_boxes_on_img(im, boxes, thickness=2, font_weight=None, font_size=0.6, colors=colors_):
im = np.copy(im)
for _, box in boxes.iterrows():
color = colors[box.label] if box.visibility else INVISIBLE
x, y, w, h = map(int, [box.x, box.y, box.w, box.h])
label = '{}({})'.format(box.label, box.confidence) if 'confidence' in box else box.label
# cv2.rectangle(image, start_point, end_point, color, thickness)
cv2.rectangle(im, (x, y), (x + w, y + h), color, thickness)
# cv2.putText(image, text, origin, font, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]])
cv2.putText(im, label, (x + 3, y + h - 3), 0, font_size, color, font_weight or thickness)
return im
def draw_detections(im, i, df, *a, **kw):
'''Draws detections on a single frame.'''
return draw_boxes_on_img(im, df[df.frame_id == i + IS_ONE_BASED], *a, **kw)
def draw_annot_on_spec(y, sr, file_audio_anot, file_video_annot, start=0, end=10):
fig, axs = plt.subplots(3, 1, figsize=(9, 8), sharex='all')
# fig.tight_layout(pad=3.0)
# Plot waveform
plt.sca(axs[0])
plt.title("Original Two-channel Audio Waveform")
librosa.display.waveshow(y[0, :], sr=sr, color='black')
plt.xlabel('')
plt.grid()
plt.sca(axs[1])
librosa.display.waveshow(y[1, :], sr=sr, color='black')
plt.xlabel('')
plt.grid()
# Plot spectrogram
plt.sca(axs[2])
plt.title("Audio Spectrogram with Annotations")
y_stft = librosa.stft(y[0])
y_specgram = librosa.amplitude_to_db(np.abs(y_stft), ref=np.max)
librosa.display.specshow(y_specgram, sr=sr, y_axis='mel', x_axis='time')
# Add annotations
bar_height = 0.3
bar_bottom_it = cycle(2 ** np.arange(8, 15, bar_height + 0.1))
# Add audio annotations
plt.sca(axs[2])
for _, event in file_audio_anot.iterrows():
ev_start = event['start']
ev_end = event['end']
if ev_start < end and ev_end > start:
ctr = (ev_start + ev_end) / 2
width = ev_end - ev_start
bottom = next(bar_bottom_it)
height = bar_height * bottom
plt.bar(x=ctr, width=width, bottom=bottom, height=height, alpha=0.5, color=COLOR_BARS[event['label']])
plt.text(ev_start + 0.05, bottom + height / 2, f'[audio]:{event["label"]}',
color='w', va='center')
# Add video annotations
plt.sca(axs[2])
events = file_video_annot.groupby(['track_id', 'label']).agg({'time': ['min', 'max']}).reset_index()
for _, event in events.iterrows():
ev_start = event['time']['min']
ev_end = event['time']['max'] + LABELS_PERIOD
if ev_start < end and ev_end > start:
ctr = (ev_start + ev_end) / 2
width = ev_end - ev_start
bottom = next(bar_bottom_it)
height = bar_height * bottom
plt.bar(x=ctr, width=width, bottom=bottom, height=height, alpha=0.5, color=COLOR_BARS[event['label'][0]])
plt.text(ev_start + 0.05, bottom + height / 2, f'[video] {event["label"][0]}',
color='w', va='center')