-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrunner.py
128 lines (98 loc) · 4.18 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from os import path
import argparse
import time
import pickle as Pick
from GA import GA
from utils.Chromo import inbalance_measure
from utils.Input import Input
import warnings
warnings.filterwarnings("error")
BASEDIR = path.dirname(path.realpath(__file__))
class Parameters:
def __init__(self, N):
self.RGA_flag = 1 # 1 -> Will run RGA | 0 -> Will run UGA
self.MaxTime = 3600 # Termination criteria (Total run time limit)
self.nPop = 30 + int(N) # Number of the solution in Genetic alg population
self.Maxit = 100 + 3 * int(N) # Termination criteria (maximum number of generation)
self.Max_noimprove = int(self.Maxit * 0.2) # Termination criteria (maximum number of generation without improvemnt)
self.CRate = 0.7 # Percentage of new solution created by crossover
self.MRate = 0.3 # Percentage of new solutions created by mutation
self.mu = 0.3 # Mutation Rate (percentage of genes changed in each mutation)
self.IM = 0.2 # Minimum printing quantity balance
self.sp = 1.5 # parameter in parents selection
self.BR_rep = 1 # Bin reduction applied after % iterations
def read_object(FileName, folder):
if folder == "Input":
path = BASEDIR + f"/Data/{folder}/{FileName}"
else:
path = BASEDIR + f"/Data/{folder}/{FileName}_ModelSol"
with open(path, 'rb') as input:
obj = Pick.load(input, encoding="latin1")
return obj
def solution_display(sol, runtime):
print("\033[94m------------ Best Solution ------------\033[0m")
print("Total cost of printing all bins: %s" %sol.total_cost)
print("Total lateness and earliness: %s" %sol.early_lateness)
print("Number of Bins: %s" %len(sol.Bins))
print("Algorithm Run Time: %s" %runtime)
print("Bin to days %s" %[(i,len(d.bin2print)) for i,d in enumerate(sol.days)])
for i, b in enumerate(sol.Bins):
b.Draw()
print("Printing Quantity: %s" %b.quantity)
# print("Items quantity-due: ", [(it.name, it.q, it.d) for it in b.items] )
print("IM: %s" %inbalance_measure(b.items))
print("Is a reversal Bin= %d" % b.Revolta)
def item_name_correction(data):
for it in data.items.values():
it.name = str(it.ID)
it.e = data.Earliness
it.l = data.Lateness
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='')
# Required positional argument
parser.add_argument('which_GA', type=str,
help="Specify the GA version you want to use: RGA or UGA")
parser.add_argument('inputFile', type=str,
help='Name of the input file located in Data/Input directory')
# Optional argument
parser.add_argument('--rep', type=int,
help='How many time you want to run GA on the input file? (Default: 1)')
parser.add_argument('--draw', action='store_true',
help='Flag to draw the final solution')
args = parser.parse_args()
FileName = args.inputFile
print(f"We are solving {FileName}")
if args.which_GA not in ['RGA', 'UGA']:
exit("The GA version is not correct enter RGA or UGA")
if args.rep:
No_reps = args.rep
else:
No_reps = 1
Data = read_object(FileName, "Input")
item_name_correction(Data)
Pars = Parameters(Data.N)
Pars.RGA_flag = args.which_GA == 'RGA'
if Pars.RGA_flag:
GA_type = 'RGA'
else:
GA_type = 'UGA'
best_cost = 0
Avg_cost = 0
Avg_time = 0
for runs in range(No_reps):
start = time.time()
Solver = GA(Data, Pars)
Best_Sol = Solver.run()
Runtime = time.time()-start
if runs == 0 or Best_Sol.total_cost < best_cost:
best_cost = Best_Sol.total_cost
BB_Sol = Best_Sol
Avg_cost += Best_Sol.total_cost / No_reps
Avg_time += Runtime / No_reps
if args.draw:
solution_display(BB_Sol, Avg_time)
print("\033[94m---------Summery of Results--------\033[0m")
print(f"We solved {FileName} with {GA_type} for {No_reps} times")
print(f"Best Cost: {round(best_cost, 2)}")
print(f"Avg. Cost {str(round(Avg_cost, 2))}")
print(f"Avg. Time {str(round(Avg_time, 2))}")