-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathpolygonize.py
618 lines (524 loc) · 21.8 KB
/
polygonize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
# Polygonize algorithm creates vector polygons for connected regions of pixels
# that share the same pixel value in a raster. It is a raster to vector
# converter.
#
# Algorithm here uses compass directions for clarity, so +x direction is East
# and +y direction is North. 2D arrays are flattened to 1D to make maths of
# moving through the grid easier/faster to calculate. 2D array have shape
# (ny, nx) so 1D flattened array has length n = nx*ny. Position within a 1D
# array is denoted by index ij = i + j*nx, so i = ij % nx and j = ij // nx.
# Direction of motion through the grid is represented by forward and left
# which are the values to add to ij to move one pixel in the forward and left
# direction respectively. forward is +1 for E, -1 for W, +nx for N and -nx
# for S.
#
# There are two main stages in the algorithm. Firstly the raster is divided
# into connected regions that contain adjacent pixels of the same value. Each
# region is labelled with a unique integer ID starting at 1. Regions
# corresponding to masked out pixels are all given the same region ID of 0.
#
# The second stage identifies where polygon exteriors and holes start, and
# follows each of these boundaries around the raster, keeping to the edge of
# the region. Holes are grouped together with their enclosing exterior
# boundary.
#
# The points of exterior boundaries are ordered in an anticlockwise manner,
# those of hole boundaries in a clockwise manner. This assumes that both the
# x and y coordinates are monotonically increasing or decreasing.
from enum import Enum
from typing import Dict, List, Optional, Tuple, Union
import numba as nb
import numpy as np
import xarray as xr
from ..utils import ngjit
_regions_dtype = np.uint32
_visited_dtype = np.uint8
def generated_jit(function=None, cache=False,
pipeline_class=None, **options):
"""
This decorator allows flexible type-based compilation
of a jitted function. It works as `@jit`, except that the decorated
function is called at compile-time with the *types* of the arguments
and should return an implementation function for those types.
"""
from numba.extending import overload
jit_options = dict()
if pipeline_class is not None:
jit_options['pipeline_class'] = pipeline_class
jit_options['cache'] = cache
jit_options |= options
if function is not None:
overload(function, jit_options=jit_options,
strict=False)(function)
return function
else:
def wrapper(func):
overload(func, jit_options=jit_options,
strict=False)(func)
return func
return wrapper
class Turn(Enum):
Left = -1
Straight = 0
Right = 1
@ngjit
def _diff_row(ij0: int, ij1: int, nx: int) -> bool:
return (ij0 // nx) != (ij1 // nx)
@ngjit
def _outside_domain(ij: int, n: int) -> bool:
return ij < 0 or ij >= n
@ngjit
def _min_and_max(value0, value1):
if value0 < value1:
return value0, value1
else:
return value1, value0
# Follow the boundary of a polygon around the raster starting from the
# specified ij pixel. If hole is True the start is on the N edge of the pixel
# facing W, and if hole is False the start is on the S edge of the pixel
# facing E.
#
# There are two passes. First pass determines the number of points and
# allocates a numpy array big enough to take the points, the second pass saves
# the points. This is better than a single pass that repeatedly reallocates
# space for the increasing number of points.
#
# Returns the region ID and the 2D array of boundary points. The last
# boundary point is the same as the first.
@ngjit
def _follow(
regions: np.ndarray, # _regions_dtype, shape (nx*ny,)
visited: np.ndarray, # _visited_dtype, shape (nx*ny,)
nx: int,
ny: int,
ij: int,
hole: bool,
) -> Tuple[int, np.ndarray]:
region = regions[ij]
n = nx*ny
points = None # Declare before loop for numba
for pass_ in range(2):
prev_forward = 0 # Start with an invalid direction.
if hole:
forward = -1 # Facing W along N edge.
left = -nx
else:
forward = 1 # Facing E along S edge.
left = nx
start_forward = forward
start_ij = ij
npoints = 0
while True:
if pass_ == 1:
if forward == 1 and not hole:
# Mark pixel so that it will not be considered a future
# non-hole starting pixel.
visited[ij] |= 1
elif forward == -1 and ij+nx < n:
# Mark pixel so that is will not be considered a future
# hole starting pixel.
visited[ij+nx] |= 2
if prev_forward != forward:
if pass_ == 1:
# Add point.
i = ij % nx
j = ij // nx
if forward == -1:
i += 1
j += 1
elif forward == nx:
i += 1
elif forward == -nx:
j += 1
points[2*npoints] = i
points[2*npoints+1] = j
npoints += 1
prev_forward = forward
ijnext = ij + forward
ijnext_right = ijnext - left
# Determine direction of turn.
if abs(forward) == 1: # Facing E (forward == 1) or W (forward -1)
if _diff_row(ij, ijnext, nx):
turn = Turn.Left
elif (not _outside_domain(ijnext_right, n) and
regions[ijnext_right] == region):
turn = Turn.Right
elif regions[ijnext] == region:
turn = Turn.Straight
else:
turn = Turn.Left
else: # Facing N (forward == nx) or S (forward == -nx)
if _outside_domain(ijnext, n):
turn = Turn.Left
elif (not _diff_row(ijnext, ijnext_right, nx) and
regions[ijnext_right] == region):
turn = Turn.Right
elif regions[ijnext] == region:
turn = Turn.Straight
else:
turn = Turn.Left
# Apply turn.
if turn == Turn.Straight:
ij = ijnext
elif turn == Turn.Left:
prev_forward = forward
forward = left
left = -prev_forward
else: # Turn.Right
prev_forward = forward
forward = -left
left = prev_forward
ij = ijnext_right
# Finished boundary when returned to start.
if ij == start_ij and forward == start_forward:
break
if pass_ == 0:
# End of first pass.
points = np.empty(2*(npoints+1)) # Note extra point at end.
points = points.reshape((-1, 2))
points[-1] = points[0] # End point the same as start point.
return region, points
# Generator of numba-compatible comparison functions for values.
# If both values are integers use a fast equality operator, otherwise use a
# slower floating-point comparison like numpy.isclose.
@generated_jit(nogil=True, nopython=True)
def _is_close(
reference: Union[int, float],
value: Union[int, float],
) -> bool:
if (isinstance(reference, nb.types.Integer) and
isinstance(value, nb.types.Integer)):
return lambda reference, value: value == reference
else:
atol = 1e-8
rtol = 1e-5
return lambda reference, value: \
abs(value - reference) <= (atol + rtol*abs(reference))
# Calculate region connectivity for the specified values raster and optional
# mask raster. Each region is labelled with a unique integer ID starting at
# 1. Regions corresponding to masked out pixels are all given the same region
# ID of 0.
#
# Algorithm walks through the raster from ij = 0 to ij = n-1. If connectivity
# is 4 it uses the values and region IDs of the pixels to the W and S to
# determine the region ID of the current pixel. This may involve using a new
# region ID, or the region ID of the W or S pixel, or merging the region IDs
# of the W and S pixels together if they are joined together as a single
# region. Merging information is stored in a region_lookup dict for resolving
# later on.
#
# For a connectivity of 8, the values and region IDs of the pixels to the SW
# and SE are also considered.
#
# If the algorithm requires too many unique region IDs it will raise a
# RuntimeError advising the user to split up their raster into chunks, e.g.
# using dask.
@ngjit
def _calculate_regions(
values: np.ndarray, # Could be ints or floats, shape (nx*ny,)
mask: Optional[np.ndarray], # shape (nx*ny,)
connectivity_8: bool,
nx: int,
ny: int,
) -> np.ndarray: # _regions_dtype, shape (nx*ny,)
# Array of regions to return, integers starting at zero.
regions = np.zeros_like(values, dtype=_regions_dtype)
# Non-zero entries of region_lookup refer to region of first pixel (lowest
# ij) in region.
lookup_size = max(64, nx, ny) # Guess reasonable initial size.
region_lookup = np.zeros(lookup_size, dtype=_regions_dtype)
max_region = np.iinfo(_regions_dtype).max
region = 0
for ij in range(nx*ny):
if mask is not None and not mask[ij]:
regions[ij] = 0 # Masked out pixels are always region 0.
else:
# Is pixel in same region as pixel to W?
matches_W = \
(ij % nx > 0 and # i > 0
(mask is None or mask[ij-1]) and # W pixel in mask
_is_close(values[ij], values[ij-1]))
if matches_W:
region_W = regions[ij-1]
# Is pixel in same region as pixel to S?
matches_S = \
(ij >= nx and # j > 0
(mask is None or mask[ij-nx]) and # S pixel in mask
_is_close(values[ij], values[ij-nx]))
if matches_S:
region_S = regions[ij-nx]
# If connectivity is 8, need to consider pixels to SW and SE.
# Only need to consider SW pixel if it is in a different region to
# W pixel; similar applies to SE and S pixels.
if connectivity_8 and ij >= nx:
if (not matches_W and ij % nx > 0 and
(mask is None or mask[ij-nx-1]) and
_is_close(values[ij], values[ij-nx-1])):
matches_W = True
region_W = regions[ij-nx-1]
if (not matches_S and ij % nx < nx-1 and
(mask is None or mask[ij-nx+1]) and
_is_close(values[ij], values[ij-nx+1])):
matches_S = True
region_S = regions[ij-nx+1]
# Set region for this pixel, and merge regions if necessary.
if matches_W and matches_S:
lower_region, upper_region = _min_and_max(region_W, region_S)
regions[ij] = lower_region
if lower_region != upper_region:
region_lookup = _merge_regions(
region_lookup, lower_region, upper_region)
elif matches_W:
regions[ij] = region_W
elif matches_S:
regions[ij] = region_S
else:
if region == max_region:
raise RuntimeError(
"polygonize generates too many polygons, "
"split your raster into smaller chunks."
)
region += 1
regions[ij] = region
# A number of region IDs may refer to the same region via region_lookup.
# Here create new region_lookup to map from current region ID to the
# region ID of the first pixel (lowest ij) in the region.
max_region = region + 1
new_region_lookup = np.empty(max_region, dtype=_regions_dtype)
n_region_lookup = len(region_lookup)
new_region = 0
for i in range(max_region):
target = region_lookup[i] if i < n_region_lookup else 0
if target == 0:
new_region_lookup[i] = new_region
new_region += 1
else:
new_region_lookup[i] = new_region_lookup[target]
region_lookup = new_region_lookup
# Update regions using region_lookup.
for ij in range(nx*ny):
regions[ij] = region_lookup[regions[ij]]
return regions
@ngjit
def _merge_regions(
region_lookup: Dict[int, int],
lower_region: int,
upper_region: int,
) -> Dict[int, int]:
if upper_region >= len(region_lookup):
old_size = len(region_lookup)
new_size = max(upper_region + 1, 2*old_size)
# numba-compatible resize of region_lookup.
old_region_lookup = region_lookup
region_lookup = np.empty(new_size, dtype=_regions_dtype)
region_lookup[:old_size] = old_region_lookup
region_lookup[old_size:] = 0
# Will be setting region_lookup[upper_region]. If this already has a
# non-zero value, need to ensure that overwriting it does not result in
# the region being left unconnected, hence the while-loop.
while True:
prev = region_lookup[upper_region]
repeat = (prev != 0 and prev != lower_region)
if repeat:
lower_region, prev = _min_and_max(lower_region, prev)
region_lookup[upper_region] = lower_region
if not repeat:
break
upper_region = prev
return region_lookup
# For debugging purposes only.
@ngjit
def _print_regions(regions, region_lookup, nx, ny):
print("---------- regions ----------")
print(regions.reshape((ny, nx))[::-1])
print("----------------------------------")
print("lookup", region_lookup)
print("---------------------------")
@ngjit
def _transform_points(
pts: np.ndarray, # float64, shape (?, 2)
transform: np.ndarray, # float64, shape (6,)
):
# Apply transform in place.
for i in range(len(pts)):
x = transform[0]*pts[i, 0] + transform[1]*pts[i, 1] + transform[2]
y = transform[3]*pts[i, 0] + transform[4]*pts[i, 1] + transform[5]
pts[i, 0] = x
pts[i, 1] = y
@ngjit
def _scan(
values: np.ndarray, # shape (nx*ny,)
mask: Optional[np.ndarray], # shape (nx*ny,)
connectivity_8: bool,
transform: Optional[np.ndarray], # shape (6,)
nx: int,
ny: int,
) -> Tuple[List[Union[int, float]], List[List[np.ndarray]]]:
regions = _calculate_regions(values, mask, connectivity_8, nx, ny)
# Visited flags used to denote where boundaries have already been
# followed and hence are not future start positions.
visited = np.zeros_like(values, dtype=_visited_dtype)
region_done = 0 # Always consider regions in increasing order.
column = [] # Pixel values corresponding to regions > 0.
polygons = [] # Polygons corresponding to regions > 0.
# Identify start pixels and follow their region boundaries, adding them to
# the correct polygons as exterior boundaries or holes.
for ij in range(nx*ny):
if not (visited[ij] & 1) and regions[ij] == region_done+1:
# Follow exterior of polygon on S side of pixel ij facing E.
region, points = _follow(regions, visited, nx, ny, ij, False)
if transform is not None:
_transform_points(points, transform)
column.append(values[ij])
polygons.append([points])
# Now len(polygons) == region
region_done = region
if (ij >= nx and not (visited[ij] & 2) and
regions[ij] != regions[ij-nx] and regions[ij-nx] != 0):
# Follow hole of polygon on N side of pixel ij-nx facing W.
region, points = _follow(regions, visited, nx, ny, ij-nx, True)
if transform is not None:
_transform_points(points, transform)
# Polygon index is one less than region as region 0 has no
# polygons.
polygons[region-1].append(points)
return column, polygons
def _to_awkward(
column: List[Union[int, float]],
polygon_points: List[np.ndarray],
):
import awkward as ak
ak_array = ak.Array(polygon_points)
return column, ak_array
def _to_geopandas(
column: List[Union[int, float]],
polygon_points: List[np.ndarray],
column_name: str,
):
import geopandas as gpd
from shapely.geometry import Polygon
# Convert list of point arrays to shapely Polygons.
polygons = list(map(
lambda points: Polygon(points[0], points[1:]), polygon_points))
df = gpd.GeoDataFrame({column_name: column, "geometry": polygons})
return df
def _to_spatialpandas(
column: List[Union[int, float]],
polygon_points: List[np.ndarray],
column_name: str,
):
from spatialpandas import GeoDataFrame
from spatialpandas.geometry import PolygonArray
# spatialpandas expects 1d numpy arrays.
for i, arrays in enumerate(polygon_points):
polygon_points[i] = \
list(map(lambda array: np.reshape(array, -1), arrays))
df = GeoDataFrame({
column_name: column, "geometry": PolygonArray(polygon_points)})
return df
def _polygonize_numpy(
values: np.ndarray,
mask: Optional[np.ndarray],
connectivity_8: bool,
transform: Optional[np.ndarray],
) -> Tuple[List[Union[int, float]], List[List[np.ndarray]]]:
ny, nx = values.shape
if nx == 1:
# Algorithm requires nx > 1 to differentiate between facing E
# (forward == 1) and facing N (forward == nx), so add extra column to
# values array and mask the column out.
nx = 2
values = np.hstack((values, np.empty_like(values)))
if mask is not None:
mask = np.hstack((mask, np.zeros_like(mask)))
else:
mask = np.zeros_like(values, dtype=bool)
mask[:, 0] = True
values = values.ravel()
if mask is not None:
mask = mask.ravel()
column, polygon_points = _scan(
values, mask, connectivity_8, transform, nx, ny)
return column, polygon_points
def polygonize(
raster: xr.DataArray, # shape (ny, nx) integer or float
mask: Optional[xr.DataArray] = None, # shape (ny, nx) bool/integer/float
connectivity: int = 4, # 4 or 8
transform: Optional[np.ndarray] = None, # shape (6,)
column_name: str = "DN",
return_type: str = "numpy",
):
"""
Polygonize creates vector polygons for connected regions of pixels in a
raster that share the same pixel value. It is a raster to vector
converter.
Parameters
----------
raster: xr.DataArray
Input raster.
mask: xr.DataArray, optional
Optional input mask. Pixels to include should have mask values of 1
or True, pixels to exclude should have 0 or False. This is the
opposite of a NumPy mask.
connectivity: int, default=4
Whether to use 4-connectivity (adjacent along long edge only) or
8-connectivity (adjacent along long edge or diagonal) to determine
which pixels are connected. Connectivity of 4 returns valid polygons
(by shapely's definition) provided both x and y are monotonically
increasing or decreasing. Connectivity of 8 does not necessarily
return valid polygons.
transform: ndarray, optional
Optional affine transform to apply to return polygon coordinates.
column_name: str, default="DN"
Name to use for column returned. Only used if return_type is
"geopandas" or "spatialpandas".
return_type: str, default="numpy"
Format of returned data. Allowed values are "numpy", "spatialpandas",
"geopandas" and "awkward". Only "numpy" is always available, the
others require optional dependencies.
Returns
-------
Polygons and their corresponding values in a format determined by
return_type.
"""
if raster.ndim != 2 or raster.shape[0] < 1 or raster.shape[1] < 1:
raise ValueError(
"Raster array must be 2D with a shape of at least (1, 1)")
# Check mask.
if mask is not None:
if not (type(raster.data) is type(mask.data)): # noqa: E721
raise TypeError(
"raster and mask have different underlying types: "
f"{type(raster.data)} and {type(mask.data)}")
if raster.shape != mask.shape:
raise ValueError(
f"raster and mask must have the same shape: {raster.shape} "
f"{mask.shape}")
mask_data = mask.data if mask is not None else None
# Check connectivity.
if connectivity not in (4, 8):
raise ValueError(
f"connectivity must be either 4 or 8, not {connectivity}")
connectivity_8 = (connectivity == 8)
# Check transform.
if transform is not None:
transform = np.asarray(transform)
if len(transform) != 6:
raise ValueError(
f"Incorrect transform length of {len(transform)} instead of 6")
if isinstance(raster.data, np.ndarray):
column, polygon_points = _polygonize_numpy(
raster.data, mask_data, connectivity_8, transform)
else:
raise TypeError(f"Unsupported array type: {type(raster.data)}")
# Convert to requested return_type.
if return_type == "numpy":
return column, polygon_points
elif return_type == "awkward":
return _to_awkward(column, polygon_points)
elif return_type == "geopandas":
return _to_geopandas(column, polygon_points, column_name)
elif return_type == "spatialpandas":
return _to_spatialpandas(column, polygon_points, column_name)
else:
raise ValueError(f"Invalid return_type '{return_type}'")