-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
135 lines (110 loc) · 4.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import numpy as np
from torch.nn import functional as F
from sklearn.metrics import roc_auc_score
import cv2
from scipy.ndimage import gaussian_filter
from PIL import Image
import numpy as np
from matplotlib import image
import torchvision.transforms as T
from matplotlib import pyplot as plt
from os import listdir
from torchvision import transforms
import torch
def cal_anomaly_map(fs_list, ft_list, out_size=224, amap_mode='mul'):
if amap_mode == 'mul':
anomaly_map = np.ones([out_size, out_size])
else:
anomaly_map = np.zeros([out_size, out_size])
a_map_list = []
for i in range(len(ft_list)):
fs = fs_list[i]
ft = ft_list[i]
a_map = 1 - F.cosine_similarity(fs, ft)
a_map = torch.unsqueeze(a_map, dim=1)
a_map = F.interpolate(a_map, size=out_size, mode='bilinear', align_corners=True)
a_map = a_map[0, 0, :, :].to('cpu').detach().numpy()
a_map_list.append(a_map)
if amap_mode == 'mul':
anomaly_map *= a_map
else:
anomaly_map += a_map
return anomaly_map, a_map_list
def show_cam_on_image(img, anomaly_map):
cam = np.float32(anomaly_map)/255 + np.float32(img)/255
cam = cam / np.max(cam)
return np.uint8(255 * cam)
def min_max_norm(image):
a_min, a_max = image.min(), image.max()
return (image-a_min)/(a_max - a_min)
def cvt2heatmap(gray):
heatmap = cv2.applyColorMap(np.uint8(gray), cv2.COLORMAP_JET)
return heatmap
def evaluation_ATTA(encoder, bn, decoder, dataloader,device, type_of_test, img_size, lamda=0.5, dataset_name='mnist', _class_=None):
bn.eval()
decoder.eval()
gt_list_sp = []
pr_list_sp = []
if dataset_name == 'mnist':
link_to_normal_sample = '/home/cttri/anomaly/data/MNIST/MNIST_grey/training/' + str(_class_) #update the link here
filenames = [f for f in listdir(link_to_normal_sample)]
filenames.sort()
link_to_normal_sample = '/home/tri/data/MNIST/MNIST_grey/training/' + str(_class_) + '/' + filenames[0] #update the link here
normal_image = Image.open(link_to_normal_sample).convert("RGB")
if dataset_name == 'mvtec':
link_to_normal_sample = '/home/cttri/anomaly/data/mvtec/' + _class_ + '/train/good/000.png' #update the link here
normal_image = Image.open(link_to_normal_sample).convert("RGB")
if dataset_name == 'PACS':
labels_dict = {
0: 'dog',
1: 'elephant',
2: 'giraffe',
3: 'guitar',
4: 'horse',
5: 'house',
6: 'person'
}
link_to_normal_sample = '/home/cttri/anomaly/PACS/train/photo/' + labels_dict[_class_] #update the link here
filenames = [f for f in listdir(link_to_normal_sample)]
filenames.sort()
link_to_normal_sample = '/home/cttri/anomaly/PACS/train/photo/' + labels_dict[_class_] + '/' + filenames[0] #update the link here
normal_image = Image.open(link_to_normal_sample).convert("RGB")
if dataset_name != 'mnist':
mean_train = [0.485, 0.456, 0.406]
std_train = [0.229, 0.224, 0.225]
trans = T.Compose([
T.Resize((img_size, img_size)),
T.ToTensor(),
transforms.Normalize(mean=mean_train,
std=std_train)
])
else:
trans = T.Compose([
T.Resize((img_size, img_size)),
T.ToTensor(),
])
normal_image = trans(normal_image)
normal_image = torch.unsqueeze(normal_image, 0)
with torch.no_grad():
for sample in dataloader:
img, label = sample[0], sample[1]
if dataset_name != 'mvtec' and dataset_name != 'mvtec_ood':
if int(label) != _class_:
label = 1
else:
label = 0
else:
label = int(torch.sum(label) != 0)
if img.shape[1] == 1:
img = img.repeat(1, 3, 1, 1)
normal_image = normal_image.to(device)
img = img.to(device)
inputs = encoder(img, normal_image, type_of_test, lamda=lamda)
outputs = decoder(bn(inputs))
anomaly_map, _ = cal_anomaly_map(inputs, outputs, img.shape[-1], amap_mode='a')
anomaly_map = gaussian_filter(anomaly_map, sigma=4)
gt_list_sp.append(int(label))
pr_list_sp.append(np.max(anomaly_map))
auroc_sp = round(roc_auc_score(gt_list_sp, pr_list_sp), 4)
return auroc_sp