-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise_1.cu
145 lines (119 loc) · 4.81 KB
/
exercise_1.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/**
* A very simple matrix multiplication example to demonstrate the difference between row-wise and column-wise matrix multiplication.
* It doesn't handle error checking and is not optimized for performance.
*/
#include <iostream>
#include <cuda_runtime.h>
#include <chrono>
__global__ void row_wise_mat_mul_kernel(int *A, int* B, int* C, unsigned int m, unsigned int n, unsigned int p) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
if (row < m) {
for (unsigned int j = 0; j < p; j++) {
C[row * p + j] = 0;
for (unsigned int k = 0; k < n; k++) {
C[row * p + j] += A[row * n + k] * B[k * p + j];
}
}
}
}
__global__ void col_wise_mat_mul_kernel(int *A, int *B, int *C, unsigned int m, unsigned int n, unsigned int p) {
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col < p) {
for (unsigned int i = 0; i < m; i++) {
C[i * p + col] = 0;
for (unsigned int k = 0; k < n; k++) {
C[i * p + col] += A[i * n + k] * B[k * p + col];
}
}
}
}
void row_wise_mat_mul_gpu(int *A, int* B, int* C, unsigned int m, unsigned int n, unsigned int p) {
int *d_A, *d_B, *d_C;
cudaMalloc(&d_A, m * n * sizeof(int));
cudaMalloc(&d_B, n * p * sizeof(int));
cudaMalloc(&d_C, m * p * sizeof(int));
cudaMemcpy(d_A, A, m * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, n * p * sizeof(int), cudaMemcpyHostToDevice);
dim3 block(32, 32);
dim3 grid((p + block.x - 1) / block.x, (m + block.y - 1) / block.y);
row_wise_mat_mul_kernel<<<grid, block>>>(d_A, d_B, d_C, m, n, p);
cudaMemcpy(C, d_C, m * p * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
}
void col_wise_mat_mul_gpu(int *A, int* B, int* C, unsigned int m, unsigned int n, unsigned int p) {
int *d_A, *d_B, *d_C;
cudaMalloc(&d_A, m * n * sizeof(int));
cudaMalloc(&d_B, n * p * sizeof(int));
cudaMalloc(&d_C, m * p * sizeof(int));
cudaMemcpy(d_A, A, m * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, n * p * sizeof(int), cudaMemcpyHostToDevice);
dim3 block(32, 32);
dim3 grid((p + block.x - 1) / block.x, (m + block.y - 1) / block.y);
col_wise_mat_mul_kernel<<<grid, block>>>(d_A, d_B, d_C, m, n, p);
cudaMemcpy(C, d_C, m * p * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
}
void matmul_cpu(int *A, int *B, int *C, unsigned int m, unsigned int n, unsigned int p) {
for (unsigned int i = 0; i < m; i++) {
for (unsigned int j = 0; j < p; j++) {
C[i * p + j] = 0;
for (unsigned int k = 0; k < n; k++) {
C[i * p + j] += A[i * n + k] * B[k * p + j];
}
}
}
}
int main() {
unsigned int M = 800;
unsigned int N = 1000;
unsigned int P = 800;
int *A = new int[M * N];
int *B = new int[N * P];
int *C_cpu = new int[M * P];
int *C_gpu_row = new int[M * P];
int *C_gpu_col = new int[M * P];
for (unsigned int i = 0; i < M * N; i++) {
A[i] = rand() % 100;
}
for (unsigned int i = 0; i < N * P; i++) {
B[i] = rand() % 100;
}
// Measure time for CPU
auto start_cpu = std::chrono::high_resolution_clock::now();
matmul_cpu(A, B, C_cpu, M, N, P);
auto end_cpu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_cpu = end_cpu - start_cpu;
std::cout << "CPU time: " << elapsed_cpu.count() << " s" << std::endl;
auto start_gpu_row = std::chrono::high_resolution_clock::now();
row_wise_mat_mul_gpu(A, B, C_gpu_row, M, N, P);
auto end_gpu_row = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_gpu_row = end_gpu_row - start_gpu_row;
std::cout << "GPU row-wise time: " << elapsed_gpu_row.count() << " s" << std::endl;
for (unsigned int i = 0; i < M * P; i++) {
if (C_cpu[i] != C_gpu_row[i]) {
std::cout << "Mismatch at index " << i << " expected " << C_cpu[i] << " got " << C_gpu_row[i] << std::endl;
break;
}
}
auto start_gpu_col = std::chrono::high_resolution_clock::now();
col_wise_mat_mul_gpu(A, B, C_gpu_col, M, N, P);
auto end_gpu_col = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed_gpu_col = end_gpu_col - start_gpu_col;
std::cout << "GPU col-wise time: " << elapsed_gpu_col.count() << " s" << std::endl;
for (unsigned int i = 0; i < M * P; i++) {
if (C_cpu[i] != C_gpu_col[i]) {
std::cout << "Mismatch at index " << i << " expected " << C_cpu[i] << " got " << C_gpu_col[i] << std::endl;
break;
}
}
delete[] A;
delete[] B;
delete[] C_cpu;
delete[] C_gpu_row;
delete[] C_gpu_col;
return 0;
}