-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining.py
525 lines (437 loc) · 23.7 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#This code contain some BERT code from https://github.com/google-research/bert, please see LICENSE-BERT
import numpy as np
np.set_printoptions(edgeitems=25, linewidth=10000, precision=4, suppress=True)
import collections
import re
import argparse
import sys
import os
import tensorflow as tf
from model import AlignttsModel, get_shape_list
from utils import alphabet, ix_to_char
FLAGS = None
def get_assignment_map_from_checkpoint(tvars, init_checkpoint):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
assignment_map = collections.OrderedDict()
for x in init_vars:
(name, var) = (x[0], x[1])
if name not in name_to_variable:
continue
assignment_map[name] = name
initialized_variable_names[name] = 1
initialized_variable_names[name + ":0"] = 1
return (assignment_map, initialized_variable_names)
def make_input_fn(filename, is_training, drop_reminder):
"""Returns an `input_fn` for train and eval."""
def input_fn(params):
def parser(serialized_example):
example = tf.io.parse_single_example(
serialized_example,
features={
"input": tf.io.FixedLenFeature([FLAGS.max_input_length], tf.int64),
"input_length": tf.io.FixedLenFeature((), tf.int64),
"input_mask": tf.io.FixedLenFeature([FLAGS.max_input_length], tf.int64),
"input_durations": tf.io.FixedLenFeature([FLAGS.max_input_length], tf.int64),
"mel": tf.io.FixedLenFeature([FLAGS.max_mel_length, FLAGS.num_mels], tf.float32),
"mel_length": tf.io.FixedLenFeature((), tf.int64),
"guid": tf.io.FixedLenFeature((), tf.int64),
})
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
dataset = tf.data.TFRecordDataset(
filename, buffer_size=FLAGS.dataset_reader_buffer_size)
if is_training:
dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=FLAGS.shuffle_buffer_size, reshuffle_each_iteration=True)
dataset = dataset.apply(
tf.contrib.data.map_and_batch(
parser, batch_size=params["batch_size"],
num_parallel_batches=8,
drop_remainder=drop_reminder))
return dataset
return input_fn
def model_fn_builder(init_checkpoint, learning_rate, num_train_steps, use_tpu):
def model_fn(features, labels, mode, params):
input = features["input"]
input_length = features["input_length"]
input_mask = features["input_mask"]
input_durations = features["input_durations"]
mel = features["mel"]
mel_length = features["mel_length"]
guid = features["guid"]
alpha=params["alpha"]
if mode == tf.estimator.ModeKeys.TRAIN:
alpha = 1.0
is_trainable = True if mode == tf.estimator.ModeKeys.TRAIN else False
model = AlignttsModel(input,
input_length,
input_mask,
input_durations,
mel,
mel_length,
hidden_size=params["hidden_size"],
num_hidden_layers=params["num_hidden_layers"],
num_attention_heads=params["num_attention_heads"],
filter_width=params["filter_width"],
duration_predictor_hidden_layers=params["duration_predictor_hidden_layers"],
duration_predictor_attention_heads=params["duration_predictor_attention_heads"],
duration_predictor_hidden_size=params["duration_predictor_hidden_size"],
num_mix_density_hidden_layers=params["num_mix_density_hidden_layers"], #as in DEEP MIXTURE DENSITY NETWORKS GOOGLE Paper
mix_density_hidden_size=params["mix_density_hidden_size"],
alphabet_size=params["alphabet_size"],
initializer_range=params["initializer_range"],
activation_fn=tf.nn.relu,
alpha=alpha,
dropout_prob=params["dropout_prob"],
use_durations=params["use_durations"],
is_trainable=is_trainable)
if mode == tf.estimator.ModeKeys.TRAIN:
tvars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES)
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
if params["training_task"] == "alignment_loss" or params["training_task"] == "fixed_encoder":
calculated_learning_rate = tf.math.pow(tf.cast(params["hidden_size"], dtype=tf.float32), -0.5)*tf.math.minimum(tf.math.pow(tf.cast(tf.compat.v1.train.get_global_step()+1, dtype=tf.float32), -0.5), tf.cast(tf.compat.v1.train.get_global_step()+1, dtype=tf.float32)*tf.math.pow(4000.0, -1.5))
effective_learning_rate = learning_rate
#effective_learning_rate = tf.Print(calculated_learning_rate, [calculated_learning_rate], "Calculated learning rate")
else:
effective_learning_rate = learning_rate
if params["training_task"] == "alignment_loss":
#step 1: training for durations
#we adopt the samelearning rate schedule in [18] with 40K training steps in thefirst two training stages
tvars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "input_embeddings")
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "input_positions"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "encoder_ttf"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mix_density_network"))
loss = tf.math.reduce_mean(model.per_example_alignment_loss, keepdims=False, name="mean_loss")
elif params["training_task"] == "fixed_encoder":
#step 2: all network training with fixed encoder with durations from input (precalculated by mix)
#we adopt the samelearning rate schedule in [18] with 40K training steps in thefirst two training stages
#mean square error (MSE)loss between the predicted and target mel-spectrum.
tvars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mel_positions")
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "decoder_ttf"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mel_spectrograms"))
loss = tf.compat.v1.losses.mean_squared_error(mel, model.mel_spectrograms)
elif params["training_task"] == 'joint_fft_mix_density':
#step 3: all network training with durations from mix network
#fixed learning rate of10−4with80K training steps in fine-tuning the parameters of the wholemodel
#mean square error (MSE)loss between the predicted and target mel-spectrum.
tvars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "input_embeddings")
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "input_positions"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "encoder_ttf"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mix_density_network"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mel_positions"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "decoder_ttf"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "mel_spectrograms"))
loss = tf.compat.v1.losses.mean_squared_error(mel, model.mel_spectrograms)
elif params["training_task"] == 'duration_predictor':
#step 4: Train predictor with durations from input (precalculated by mix)
#the duration predictor is trained with afixed learning rate of10−4and 10K training steps.
#mean square error (MSE)loss between the predicted and target mel-spectrum.
tvars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "duration_embeddings")
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "duration_positions"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "duration_ttf"))
tvars.extend(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "nominal_durations"))
loss = tf.compat.v1.losses.mean_squared_error(input_durations, model.nominal_durations)
for i, v in enumerate(tvars):
tf.logging.info("{}: {}".format(i, v))
grads = tf.gradients(loss, tvars, name='gradients')
if (FLAGS.clip_gradients > 0):
gradients, _ = tf.clip_by_global_norm(grads, FLAGS.clip_gradients)
else:
gradients = grads
#Adam optimizer with β1= 0.9,β2= 0.98,ε= 10−9.
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=effective_learning_rate, beta1=0.9, beta2=0.98, epsilon=1e-09)
if FLAGS.use_tpu:
optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.apply_gradients(zip(gradients, tvars), global_step=tf.compat.v1.train.get_global_step())
training_hooks = None
if not FLAGS.use_tpu:
logging_hook = tf.train.LoggingTensorHook({"loss": loss, "step": tf.train.get_global_step()}, every_n_iter=1)
training_hooks = [logging_hook]
return tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode, predictions=None, loss=loss, train_op=train_op, eval_metrics=None,
export_outputs=None, scaffold_fn=scaffold_fn, host_call=None, training_hooks=training_hooks,
evaluation_hooks=None, prediction_hooks=None)
else:
if params["prediction_task"] == "durations":
spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode,
predictions={'mix_durations': model.mix_durations,
'guid': guid
})
elif params["prediction_task"] == "alpha_values":
spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode,
predictions={'alpha': model.log_alpha,
'input': input,
'input_length': input_length,
'mel_length': mel_length,
'guid': guid
})
else:
spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec(
mode=mode,
predictions={'mel_durations': model.mel_durations,
'mel_spectrograms': model.mel_spectrograms,
'guid': guid
})
return spec
return model_fn
def get_alpha_durations(probabilities):
o_len = probabilities.shape[0]
s_len = probabilities.shape[1]
best = np.zeros((o_len, s_len), dtype=np.float)
b = s_len - 1
best[o_len - 1, b] = probabilities[o_len - 1, b]
for t in range(o_len - 2, -1, -1):
if b == 0:
b = 0
elif probabilities[t, b - 1] > probabilities[t, b]:
b = b - 1
else:
b = b
best[t, b] = probabilities[t, b]
return best
def get_durations(probabilities):
o_len = probabilities.shape[0]
s_len = probabilities.shape[1]
delta = np.zeros((o_len, s_len), dtype=np.float)
path = np.zeros((o_len, s_len), dtype=np.int)
best = np.zeros((o_len, s_len), dtype=np.int)
for t in range(1, o_len):
for j in range(s_len):
m = np.argmax(delta[t - 1])
if (j == m):
delta[t, j] = delta[t - 1, m] + probabilities[t - 1, m]
elif (j - 1 == m):
delta[t, j] = delta[t - 1, m] + probabilities[t - 1, m]
else:
delta[t, j] = 0
path[t, j] = m
b = np.argmax(delta[-1])
for t in range(o_len - 1, 0, -1):
best[t, b] = 1
b = path[t, b]
return best, delta
def main():
tf.logging.set_verbosity(tf.logging.INFO)
tpu_cluster_resolver = None
if FLAGS.use_tpu:
tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
tpu=FLAGS.tpu,
zone=FLAGS.tpu_zone,
project=None,
job_name='worker',
coordinator_name=None,
coordinator_address=None,
credentials='default', service=None,
discovery_url=None
)
tpu_config = tf.compat.v1.estimator.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_cores_per_replica=FLAGS.num_tpu_cores,
per_host_input_for_training=True
)
run_config = tf.compat.v1.estimator.tpu.RunConfig(
tpu_config=tpu_config,
evaluation_master=None,
session_config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True),
master=None,
cluster=tpu_cluster_resolver,
**{
'save_checkpoints_steps': FLAGS.save_checkpoints_steps,
'tf_random_seed': FLAGS.random_seed,
'model_dir': FLAGS.output_dir,
'keep_checkpoint_max': FLAGS.keep_checkpoint_max,
'log_step_count_steps': FLAGS.log_step_count_steps
}
)
#Use duration from: 0 - input, 1 - mix network, 2 - duration predictor
#mel prediction require 2, alpha or durations does not matter
use_durations = 2
if FLAGS.action == 'TRAIN':
if FLAGS.training_task == 'fixed_encoder':
use_durations = 0
elif FLAGS.training_task == 'joint_fft_mix_density':
use_durations = 1
estimator = tf.compat.v1.estimator.tpu.TPUEstimator(
model_fn=model_fn_builder(FLAGS.init_checkpoint, FLAGS.learning_rate, FLAGS.num_train_steps, FLAGS.use_tpu),
use_tpu=FLAGS.use_tpu,
train_batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.batch_size,
predict_batch_size=FLAGS.batch_size,
config=run_config,
params={
"hidden_size": FLAGS.hidden_size,
"num_hidden_layers": FLAGS.num_hidden_layers,
"num_attention_heads": FLAGS.num_attention_heads,
"filter_width": FLAGS.filter_width,
"duration_predictor_hidden_layers": FLAGS.duration_predictor_hidden_layers,
"duration_predictor_attention_heads": FLAGS.duration_predictor_attention_heads,
"duration_predictor_hidden_size": FLAGS.duration_predictor_hidden_size,
"num_mix_density_hidden_layers": FLAGS.num_mix_density_hidden_layers,
"mix_density_hidden_size": FLAGS.mix_density_hidden_size,
"alphabet_size": len(alphabet),
"initializer_range": FLAGS.initializer_range,
"alpha": FLAGS.alpha,
"num_mels": FLAGS.num_mels,
"dropout_prob": FLAGS.dropout_prob,
"use_tpu": FLAGS.use_tpu,
"use_durations": use_durations,
"training_task": FLAGS.training_task,
"prediction_task": FLAGS.prediction_task
})
if FLAGS.action == 'TRAIN':
estimator.train(input_fn=make_input_fn(FLAGS.train_file, is_training=True, drop_reminder=True), max_steps=FLAGS.num_train_steps)
if FLAGS.action == 'PREDICT':
predict_drop_remainder = True if FLAGS.use_tpu else False
results = estimator.predict(input_fn=make_input_fn(FLAGS.test_file, is_training=False, drop_reminder=predict_drop_remainder))
if FLAGS.prediction_task == 'durations':
output_predict_file = os.path.join(FLAGS.output_dir, "durations.csv")
with tf.gfile.GFile(output_predict_file, "w") as writer:
for (i, prediction) in enumerate(results):
writer.write("LJ{:03d}-{:04d}|".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000)))
writer.write(",".join([str(i) for i in prediction["mix_durations"]]) + "\n")
elif FLAGS.prediction_task == 'alpha_values':
for i, prediction in enumerate(results):
best1 = get_alpha_durations(prediction["alpha"][:prediction["mel_length"], :prediction["input_length"]])
print ("LJ{:03d}-{:04d}".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000)))
print ('@' + '__'.join([ix_to_char[prediction["input"][i]] for i in range(prediction["input_length"])]))
print ('@' + ' '.join(["{:02d}".format(np.count_nonzero(best1, axis=0)[i]) for i in range(prediction["input_length"])]))
print ("LAST:" , prediction["alpha"][prediction["mel_length"]-1, prediction["input_length"]-1])
print ("BEST START:")
for j, row in enumerate(best1):
print ("B", j, ":", " ".join(["{:1.0e}".format(x) for x in row]))
file_name = "best-LJ{:03d}-{:04d}.npy".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000))
np.save(file_name, best1, allow_pickle=True, fix_imports=True)
print ("ALPHA START:")
for j, row in enumerate(prediction["alpha"][:prediction["mel_length"]]):
print ("A", j, ":", " ".join(["{:2.0e}".format(p) for p in row[:prediction["input_length"]]]))
file_name = "alpha-LJ{:03d}-{:04d}.npy".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000))
np.save(file_name, prediction["alpha"][:prediction["mel_length"], :prediction["input_length"]], allow_pickle=True, fix_imports=True)
file_name = "log_alpha-LJ{:03d}-{:04d}.npy".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000))
np.save(file_name, prediction["alpha"][:prediction["mel_length"], :prediction["input_length"]], allow_pickle=True, fix_imports=True)
if (i >= 10):
break
else:
for prediction in results:
file_name = "LJ{:03d}-{:04d}.mel".format(int(prediction["guid"]/10000), int(prediction["guid"]%10000))
mel_spectrograms = prediction["mel_spectrograms"]
mel_length = np.sum(prediction["mel_durations"])
data = np.array(mel_spectrograms[:mel_length], 'float32')
fid = open(file_name, 'wb')
data.tofile(fid)
fid.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', type=str, default='gs://speech_synthesis/aligntts/output',
help='Model directrory in google storage.')
parser.add_argument('--init_checkpoint', type=str, default=None,
help='This will be checkpoint from previous training phase.')
parser.add_argument('--train_file', type=str, default='gs://speech_synthesis/aligntts/data/train.tfrecords',
help='Train file location in google storage.')
parser.add_argument('--test_file', type=str, default='gs://speech_synthesis/aligntts/data/test.tfrecords',
help='Test file location in google storage.')
parser.add_argument('--max_input_length', type=int, default=200,
help='Max length of input strings in characters will shorter strings filled with zeros.')
parser.add_argument('--max_mel_length', type=int, default=1024,
help='Length of the autio signal in frames. It is defined in feature preparation tool.')
parser.add_argument('--num_mels', type=int, default=80,
help='dimension of the output is 160 (80 dimensions for the meanand 80 dimensions for variance of the gaussian distribution).')
parser.add_argument('--dropout_prob', type=float, default=0.1,
help='As in FastSpeech article.')
parser.add_argument('--num_train_steps', type=int, default=140000,
help='Number of steps to run trainer.')
parser.add_argument('--iterations_per_loop', type=int, default=1000,
help='Number of iterations per TPU training loop.')
parser.add_argument('--save_checkpoints_steps', type=int, default=1000,
help='Number of tensorflow checkpoint to keep.')
parser.add_argument('--log_step_count_steps', type=int, default=1000,
help='Number of step to write logs.')
parser.add_argument('--keep_checkpoint_max', type=int, default=10,
help='Number of tensorflow checkpoint to keep.')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch size.')
parser.add_argument('--dataset_reader_buffer_size', type=int, default=100,
help='input pipeline is I/O bottlenecked, consider setting this parameter to a value 1-100 MBs.')
parser.add_argument('--shuffle_buffer_size', type=int, default=12500,
help='Items are read from this buffer.')
parser.add_argument('--use_tpu', default=False, action='store_true',
help='Train on TPU.')
parser.add_argument('--tpu', type=str, default='node-1-15-2',
help='TPU instance name.')
parser.add_argument('--num_tpu_cores', type=int, default=8,
help='Number of cores on TPU.')
parser.add_argument('--tpu_zone', type=str, default='us-central1-c',
help='TPU instance zone location.')
parser.add_argument('--learning_rate', type=float, default=5e-5,
help='Optimizer learning rate.')
parser.add_argument('--clip_gradients', type=float, default=-1.,
help='Clip gradients to deal with explosive gradients.')
parser.add_argument('--random_seed', type=int, default=1234,
help='Random seed to initialize values in a grath. It will produce the same results only if data and grath did not change in any way.')
parser.add_argument('--logging', default='INFO', choices=['DEBUG','INFO','WARNING','ERROR','CRITICAL'],
help='Enable excessive variables screen outputs.')
parser.add_argument('--action', default='PREDICT', choices=['TRAIN','EVALUATE','PREDICT'],
help='An action to execure.')
parser.add_argument('--training_task', choices=['alignment_loss', 'fixed_encoder', 'joint_fft_mix_density', 'duration_predictor'],
help='Training phase.')
parser.add_argument('--prediction_task', default='mel_values', choices=['durations', 'alpha_values', 'mel_values'],
help='Values to predict.')
parser.add_argument('--restore', default=False, action='store_true',
help='Restore last checkpoint.')
parser.add_argument('--hidden_size', type=int, default=768,
help='dimension of each network in the Feed-Forward Transformer is all set to 768.')
parser.add_argument('--num_hidden_layers', type=int, default=6,
help='Feed-Forward Transformer contains 6 FFT blocks.')
parser.add_argument('--num_attention_heads', type=int, default=2,
help='number of attention head is set to 2 in all FFT block.')
parser.add_argument('--filter_width', type=int, default=3,
help='kernel size of 1D convolution is set to 3 in all FFT block')
parser.add_argument('--duration_predictor_hidden_layers', type=int, default=2,
help='duration predictor includes 2 FFT blocks.')
parser.add_argument('--duration_predictor_attention_heads', type=int, default=2,
help='number of attention head is set to 2 in all FFT block.')
parser.add_argument('--duration_predictor_hidden_size', type=int, default=128,
help='.')
parser.add_argument('--num_mix_density_hidden_layers', type=int, default=4,
help='DEEP MIXTURE DENSITY NETWORKS GOOGLE Paper.')
parser.add_argument('--mix_density_hidden_size', type=int, default=256,
help='hidden size of the linear layer in the mix network is set to 256.')
parser.add_argument('--initializer_range', type=float, default=0.02,
help='.')
parser.add_argument('--alpha', type=float, default=1.0,
help='adjust thevoice speed from 0.5x to 1.5x.')
FLAGS, unparsed = parser.parse_known_args()
main()