forked from Soumya-Kushwaha/SoundScape
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpectogram.py
169 lines (143 loc) · 5.42 KB
/
Spectogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import PySimpleGUI as sg
import pyaudio
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import subprocess
""" RealTime Audio Spectrogram plot """
# VARS CONSTS:
_VARS = {"window": False, "stream": False, "audioData": np.array([]), "current_visualizer_process": None}
# pysimpleGUI INIT:
AppFont = "Any 16"
sg.theme("DarkBlue3")
menu_layout = [
['Run Visualizers', ['Amplitude-Frequency-Visualizer', 'Waveform', 'Spectrogram', 'Intensity-vs-Frequency-and-time']],
]
layout = [
[sg.Menu(menu_layout)],
[
sg.Graph(
canvas_size=(500, 500),
graph_bottom_left=(-2, -2),
graph_top_right=(102, 102),
background_color="#809AB6",
key="graph",
)
],
[sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")],
[
sg.Button("Listen", font=AppFont),
sg.Button("Stop", font=AppFont, disabled=True),
sg.Button("Save", font=AppFont, disabled=True),
sg.Button("Exit", font=AppFont),
],
]
_VARS["window"] = sg.Window("Mic to spectrogram plot + Max Level", layout, finalize=True)
graph = _VARS["window"]["graph"]
# INIT vars:
CHUNK = 1024 # Samples: 1024, 512, 256, 128
RATE = 44100 # Equivalent to Human Hearing at 40 kHz
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen
TIMEOUT = 10 # In ms for the event loop
pAud = pyaudio.PyAudio()
try:
pAud.get_device_info_by_index(0)
except pyaudio.CoreError as e:
print(f"Error initializing PyAudio: {e}")
pAud = None
# FUNCTIONS:
# PySimpleGUI plots:
def draw_figure(canvas, figure):
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)
figure_canvas_agg.draw()
figure_canvas_agg.get_tk_widget().pack(side="top", fill="both", expand=1)
return figure_canvas_agg
# pyaudio stream:
def stop():
if _VARS["stream"]:
_VARS["stream"].stop_stream()
_VARS["stream"].close()
_VARS["stream"] = None
_VARS["window"]["-PROG-"].update(0)
_VARS["window"]["Stop"].Update(disabled=True)
_VARS["window"]["Listen"].Update(disabled=False)
_VARS["window"]["Save"].Update(disabled=True)
# callback:
def callback(in_data, frame_count, time_info, status):
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16)
return (in_data, pyaudio.paContinue)
def listen():
_VARS["window"]["Stop"].Update(disabled=False)
_VARS["window"]["Listen"].Update(disabled=True)
_VARS["window"]["Save"].Update(disabled=False)
_VARS["stream"] = pAud.open(
format=pyaudio.paInt16,
channels=1,
rate=RATE,
input=True,
frames_per_buffer=CHUNK,
stream_callback=callback,
)
_VARS["stream"].start_stream()
def close_current_visualizer():
if _VARS["current_visualizer_process"] and _VARS["current_visualizer_process"].poll() is None:
_VARS["current_visualizer_process"].kill()
def save_spectrogram():
file_path = sg.popup_get_file('Save as', save_as=True, no_window=True, file_types=(("PNG Files", "*.png"), ("All Files", "*.*")))
if file_path:
fig.savefig(file_path)
sg.popup("File saved!", title="Success")
# INIT:
fig, ax = plt.subplots() # create a figure and an axis object
fig_agg = draw_figure(graph.TKCanvas, fig) # draw the figure on the graph
# MAIN LOOP
while True:
event, values = _VARS["window"].read(timeout=TIMEOUT)
if event in (sg.WIN_CLOSED, "Exit"):
close_current_visualizer()
stop()
pAud.terminate()
break
if event == "Listen":
listen()
if event == "Stop":
stop()
if event == "Save":
save_spectrogram()
if event == 'Amplitude-Frequency-Visualizer':
close_current_visualizer()
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Amplitude-Frequency-Visualizer.py'])
_VARS["window"].close()
break
if event == 'Waveform':
close_current_visualizer()
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Waveform.py'])
_VARS["window"].close()
break
if event == 'Spectogram':
close_current_visualizer()
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Spectogram.py'])
_VARS["window"].close()
break
if event == 'Intensity-vs-Frequency-and-time':
close_current_visualizer()
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Intensity-vs-Frequency-and-time.py'])
_VARS["window"].close()
break
# Along with the global audioData variable, this
# bit updates the spectrogram plot
elif _VARS["audioData"].size != 0:
# Update volume meter
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"]))
# Compute spectrogram
f, t, Sxx = scipy.signal.spectrogram(_VARS["audioData"], fs=RATE)
# Plot spectrogram
ax.clear() # clear the previous plot
ax.pcolormesh(
t, f, Sxx, shading="gouraud"
) # plot the spectrogram as a colored mesh
ax.set_ylabel("Frequency [Hz]") # set the y-axis label
ax.set_xlabel("Time [sec]") # set the x-axis label
fig_agg.draw() # redraw the figure
_VARS["window"].close()