-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvmTest.py
248 lines (213 loc) · 8.04 KB
/
svmTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''Images binary classifier based on scikit-learn SVM classifier.
It uses the RGB color space as feature vector.
'''
from __future__ import division
from __future__ import print_function
from PIL import Image
from sklearn import cross_validation
from sklearn import grid_search
from sklearn import svm
from sklearn import metrics
from sklearn.externals import joblib
from StringIO import StringIO
from urlparse import urlparse
import urllib2
import sys
import os
import pandas as pd
import datetime
from scipy.misc import imread
from skimage.transform import resize
import numpy as np
import matplotlib.pyplot as plt
trainFolder = "train/"
fishFolders = ["ALB", "BET", "DOL", "LAG", "NoF", "OTHER", "SHARK", "YFT"]
testFolderB = "test_stg2/"
testFolderA = "test_stg1/dummy/"
def process_directory(directory):
'''Returns an array of feature vectors for all the image files in a
directory (and all its subdirectories). Symbolic links are ignored.
Args:
directory (str): directory to process.
Returns:
list of list of float: a list of feature vectors.
'''
training = []
for root, _, files in os.walk(directory):
for file_name in files:
file_path = os.path.join(root, file_name)
img_feature = process_image_file(file_path)
if img_feature != None:
training.append(img_feature)
return training
def process_image_file(image_path):
'''Given an image path it returns its feature vector.
Args:
image_path (str): path of the image file to process.
Returns:
list of float: feature vector on success, None otherwise.
'''
try:
y = imread(image_path)
h,w,c = y.shape
x = resize(y, (16, 16), preserve_range=False)
# plt.imshow(x)
# plt.show()
return x.flatten().flatten()
except IOError:
return None
# image_fp = StringIO(open(image_path, 'rb').read())
# try:
# image = Image.open(image_fp)
# return process_image(image)
# except IOError:
# return None
def process_image_url(image_url):
'''Given an image URL it returns its feature vector
Args:
image_url (str): url of the image to process.
Returns:
list of float: feature vector.
Raises:
Any exception raised by urllib2 requests.
IOError: if the URL does not point to a valid file.
'''
parsed_url = urlparse(image_url)
request = urllib2.Request(image_url)
# set a User-Agent and Referer to work around servers that block a typical
# user agents and hotlinking. Sorry, it's for science!
request.add_header('User-Agent', 'Mozilla/5.0 (X11; Ubuntu; Linux ' \
'x86_64; rv:31.0) Gecko/20100101 Firefox/31.0')
request.add_header('Referrer', parsed_url.netloc)
# Wrap network data in StringIO so that it looks like a file
net_data = StringIO(urllib2.build_opener().open(request).read())
image = Image.open(net_data)
return process_image(image)
def process_image(image, blocks=4):
'''Given a PIL Image object it returns its feature vector.
Args:
image (PIL.Image): image to process.
blocks (int, optional): number of block to subdivide the RGB space into.
Returns:
list of float: feature vector if successful. None if the image is not
RGB.
'''
if not image.mode == 'RGB':
return None
print (image.getdata())
return image.getdata()
# feature = [0] * blocks * blocks * blocks
# pixel_count = 0
# for pixel in image.getdata():
# ridx = int(pixel[0]/(256/blocks))
# gidx = int(pixel[1]/(256/blocks))
# bidx = int(pixel[2]/(256/blocks))
# idx = ridx + gidx * blocks + bidx * blocks * blocks
# feature[idx] += 1
# pixel_count += 1
# return [x/pixel_count for x in feature]
def show_usage():
'''Prints how to use this program
'''
print("Usage: %s [class A images directory] [class B images directory]" %
sys.argv[0])
sys.exit(1)
def train(print_metrics=True):
'''Trains a classifier. training_path_a and training_path_b should be
directory paths and each of them should not be a subdirectory of the other
one. training_path_a and training_path_b are processed by
process_directory().
Args:
training_path_a (str): directory containing sample images of class A.
training_path_b (str): directory containing sample images of class B.
print_metrics (boolean, optional): if True, print statistics about
classifier performance.
Returns:
A classifier (sklearn.svm.SVC).
'''
data = []
target = []
idx = 0
for fishFolder in fishFolders:
folderName = trainFolder + fishFolder
if not os.path.isdir(folderName):
raise IOError('%s is not a directory' % folderName)
print (folderName)
training = process_directory(folderName)
data += training
target += [idx] * len(training)
print(idx)
idx += 1
# split training data in a train set and a test set. The test set will
# containt 20% of the total
x_train, x_test, y_train, y_test = cross_validation.train_test_split(data,
target, test_size=0.20) # TODO: CHANGE BACK TO 0.3?
# define the parameter search space
parameters = {'kernel': ['linear', 'rbf'], 'C': [1, 10, 100, 1000],
'gamma': [0.01, 0.001, 0.0001]}
# search for the best classifier within the search space and return it
clf = grid_search.GridSearchCV(svm.SVC(probability=True), parameters, scoring='neg_log_loss').fit(x_train, y_train)
classifier = clf.best_estimator_
if print_metrics:
print()
print('Parameters:', clf.best_params_)
print()
print('Best classifier score')
print(metrics.classification_report(y_test,
classifier.predict(x_test)))
print(metrics.log_loss(y_test, classifier.predict_proba(x_test)))
return classifier
def create_submission(predictions, test_id, info):
result1 = pd.DataFrame(predictions, columns=['ALB', 'BET', 'DOL', 'LAG', 'NoF', 'OTHER', 'SHARK', 'YFT'])
result1.loc[:, 'image'] = pd.Series(test_id, index=result1.index)
now = datetime.datetime.now()
sub_file = 'submission_' + info + '_' + str(now.strftime("%Y-%m-%d-%H-%M")) + '.csv'
result1.to_csv(sub_file, index=False)
def main():
# print('Training classifier...')
# classifier = train()
# # Save Classifier
# now = datetime.datetime.now()
paramsFilename = 'params3_2017-04-13-20-12.pkl'
# _ = joblib.dump(classifier, paramsFilename, compress=9)
# # Load Classifier
classifier = joblib.load(paramsFilename)
# Generate Test Results
predictions = []
testIds = []
for root, _, files in os.walk(testFolderA):
for file_name in files:
file_path = os.path.join(root, file_name)
features = process_image_file(file_path)
flbase = os.path.basename(file_path)
testIds.append(flbase)
prediction = classifier.predict_proba(features)
predictions.append(prediction[0])
for root, _, files in os.walk(testFolderB):
for file_name in files:
file_path = os.path.join(root, file_name)
features = process_image_file(file_path)
flbase = os.path.basename(file_path)
testIds.append(file_path)
prediction = classifier.predict_proba(features)
predictions.append(prediction[0])
print (predictions)
print (testIds)
create_submission(predictions, testIds, "3A")
# while True:
# try:
# print("Input an image file (enter to exit): "),
# file_name = raw_input()
# if not file_name:
# break
# features = process_image_file(file_name)
# print(classifier.predict(features))
# except (KeyboardInterrupt, EOFError):
# break
# except:
# exception = sys.exc_info()[0]
# print(exception)
if __name__ == '__main__':
main()