-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmodel.py
92 lines (70 loc) · 4.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import division
from keras.models import Model
from keras.layers.core import Dropout, Activation
from keras.layers import Input, merge
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.regularizers import l2
import keras.backend as K
import h5py
from eltwise_product import EltWiseProduct
from config import *
def get_weights_vgg16(f, id):
g = f['layer_{}'.format(id)]
return [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
def ml_net_model(img_rows=480, img_cols=640, downsampling_factor_net=8, downsampling_factor_product=10):
f = h5py.File("vgg16_weights.h5")
input_ml_net = Input(shape=(3, img_rows, img_cols))
#########################################################
# FEATURE EXTRACTION NETWORK #
#########################################################
weights = get_weights_vgg16(f, 1)
conv1_1 = Convolution2D(64, 3, 3, weights=weights, activation='relu', border_mode='same')(input_ml_net)
weights = get_weights_vgg16(f, 3)
conv1_2 = Convolution2D(64, 3, 3, weights=weights, activation='relu', border_mode='same')(conv1_1)
conv1_pool = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(conv1_2)
weights = get_weights_vgg16(f, 6)
conv2_1 = Convolution2D(128, 3, 3, weights=weights, activation='relu', border_mode='same')(conv1_pool)
weights = get_weights_vgg16(f, 8)
conv2_2 = Convolution2D(128, 3, 3, weights=weights, activation='relu', border_mode='same')(conv2_1)
conv2_pool = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(conv2_2)
weights = get_weights_vgg16(f, 11)
conv3_1 = Convolution2D(256, 3, 3, weights=weights, activation='relu', border_mode='same')(conv2_pool)
weights = get_weights_vgg16(f, 13)
conv3_2 = Convolution2D(256, 3, 3, weights=weights, activation='relu', border_mode='same')(conv3_1)
weights = get_weights_vgg16(f, 15)
conv3_3 = Convolution2D(256, 3, 3, weights=weights, activation='relu', border_mode='same')(conv3_2)
conv3_pool = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same')(conv3_3)
weights = get_weights_vgg16(f, 18)
conv4_1 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv3_pool)
weights = get_weights_vgg16(f, 20)
conv4_2 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv4_1)
weights = get_weights_vgg16(f, 22)
conv4_3 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv4_2)
conv4_pool = MaxPooling2D((2, 2), strides=(1, 1), border_mode='same')(conv4_3)
weights = get_weights_vgg16(f, 25)
conv5_1 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv4_pool)
weights = get_weights_vgg16(f, 27)
conv5_2 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv5_1)
weights = get_weights_vgg16(f, 29)
conv5_3 = Convolution2D(512, 3, 3, weights=weights, activation='relu', border_mode='same')(conv5_2)
#########################################################
# ENCODING NETWORK #
#########################################################
concatenated = merge([conv3_pool, conv4_pool, conv5_3], mode='concat', concat_axis=1)
dropout = Dropout(0.5)(concatenated)
int_conv = Convolution2D(64, 3, 3, init='glorot_normal', activation='relu', border_mode='same')(dropout)
pre_final_conv = Convolution2D(1, 1, 1, init='glorot_normal', activation='relu')(int_conv)
#########################################################
# PRIOR LEARNING #
#########################################################
rows_elt = math.ceil(img_rows / downsampling_factor_net) // downsampling_factor_product
cols_elt = math.ceil(img_cols / downsampling_factor_net) // downsampling_factor_product
eltprod = EltWiseProduct(init='zero', W_regularizer=l2(1/(rows_elt*cols_elt)))(pre_final_conv)
output_ml_net = Activation('relu')(eltprod)
model = Model(input=[input_ml_net], output=[output_ml_net])
for layer in model.layers:
print(layer.input_shape, layer.output_shape)
return model
def loss(y_true, y_pred):
max_y = K.repeat_elements(K.expand_dims(K.repeat_elements(K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)), shape_r_gt, axis=-1)), shape_c_gt, axis=-1)
return K.mean(K.square((y_pred / max_y) - y_true) / (1 - y_true + 0.1))