-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestudoCaso2.py
193 lines (154 loc) · 4.79 KB
/
estudoCaso2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#%%
from operator import lt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from Treelicia import Fem3d
import plotter3D as plott
# montando a geometri
L = 9 # comprimento da cauda
n = 5 # numero de pontos por reta
## direita
y_sup_d = lambda i: (-0.15-i*0.45, L-i*L, 0.6)
nodes1 = ([y_sup_d(i) for i in np.linspace(0,1,n)])
#y_inf_d = lambda j: (-0.15-j*0.45, L-j*L, 0.3-j*0.9)
#nodes2 = ([y_inf_d(i) for i in np.linspace(0,1,n)])
## esquerda
y_sup_e = lambda i: (0.6-i*0.45, 0+i*L, 0.6)
nodes3 = ([y_sup_e(i) for i in np.linspace(1,0,n)])
y_inf_e = lambda j: (0, 0+j*L, -0.6+j*0.9)
nodes4 = ([y_inf_e(i) for i in np.linspace(1,0,n)])
# ponto final
nodes5 = ([ (0, L+2.4, 0.6+0.1) ])
nodes = []
nodes.extend(nodes1)
#nodes.extend(nodes2)
nodes.extend(nodes3)
nodes.extend(nodes4)
nodes.extend(nodes5)
# add index
nodes = tuple( [ (j, nodes[j][0], nodes[j][1], nodes[j][2]) for j in range(len(nodes))] )
# elementos
## segmentos retos
elementos1 = ([ (i,i+1) for i in range(n-1) ] )
elementos2 = ([ (i,i+1) for i in range(n,2*n-1)])
elementos3 = ([ (i,i+1) for i in range(2*n,3*n-1)])
#elementos4 = ([ (i,i+1) for i in range(3*n,4*n-1)])
## elementos triangulares
elementos4 = ([ (i, i+n) for i in range(0,n)])
elementos5 = ([ (i+n,i ) for i in range(n,2*n)])
elementos6 = ([ (i+2*n, i) for i in range(0,n)])
# elemento final
elementos7 = ( (0,len(nodes)-1),
(n ,len(nodes)-1),
(2*n ,len(nodes)-1)
)
# elemento trocados
elementos8 = (
(14,3),
(14,8),
(13,7),
(13,2),
(12,6),
(12,1),
(11,5),
(11,0),
(9,3),
(8,2),
(7,1),
(6,0),
)
elementos = []
elementos.extend(elementos1)
elementos.extend(elementos2)
elementos.extend(elementos3)
elementos.extend(elementos4)
elementos.extend(elementos5)
elementos.extend(elementos6)
elementos.extend(elementos7)
elementos.extend(elementos8)
elementos = tuple( [ (j, elementos[j][0], elementos[j][1]) for j in range(len(elementos))] )
'''
fig = plt.figure('Plote dos modos de vibrar da estrutura')
#ax = fig.add_subplot(111, projection='3d')
ax = plt.axes(projection='3d')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
for elem in elementos:
ax.plot3D( [nodes[elem[1]][1], nodes[elem[2]][1]],
[nodes[elem[1]][2], nodes[elem[2]][2]],
[nodes[elem[1]][3], nodes[elem[2]][3]], '--k' )
for node in nodes:
ax.plot3D( [node[1]],[node[2]],[node[3]], 'or' )
ax.text(x = node[1] , y = node[2] , z = node[3] , s = str(node[0]) )
#ax.text(x = nodes[elem[2]][1] , y = nodes[elem[2]][2] , z = nodes[elem[2]][3] , s = str(nodes[elem[2]][0]) )
plt.show()
'''
F = 10000 #N
forcas = (
#(15, 0, -F),
(15, 1, -0.75*F),
(15, 2, 0.5*F),
)
contorno = (
(4,0,0),
(4,1,0),
(4,2,0),
(9,0,0),
(9,1,0),
(9,2,0),
(14,0,0),
(14,1,0),
(14,2,0)
)
E2 = 73e9#gpa aluminio
A2 = 0.0013# m^2 - diametro de 4 cm
rho = 27000# kg/m^3
model1 = Fem3d(nodes,elementos,forcas,contorno,E2,A2,rho)
Deslocamento, reacoes = model1.solve()
tensoes = model1.getStress(deslo= Deslocamento)
omega, phi = model1.getmodoVibration()
tensoes = np.array(tensoes)*(10**-6) #Mpa
import plotter3D as plott
# plotando os dados obtidos
pos = plott.Posprocess(model1)
# plotando deslocamento
#pos.plotDeslocamento3D(Deslocamento)
pos.plotStress3D(tensoes, var='[Mpa]')
plt.show()
# plotando modo de vibrar da estrutura
#pos.plotModoVibra3D(phi, mode = 0)
# printando os resultados
print('=============================================')
print('\t\tDeslocamentos')
print('=============================================')
print(f'GL \t\t Desl. [mm] \t\t Reacoes [N]')
for index in range(len(Deslocamento)):
print('{0:1.2f} \t\t {1:4.4f} \t\t {2:4.4f}'.format(index, Deslocamento[index], reacoes[index]))
print('=============================================')
print('\t\tTensões')
print('=============================================')
print(f'Elemento \t\t Tensão [Pa] ')
for index in range(len(tensoes)):
print('{0:1.2f} \t\t {1:4.4f} '.format(index, tensoes[index]))
print('=============================================')
print('\t\tFrequencia naturais')
print('=============================================')
print(f'Modos \t\t Freq. [Hz] ')
for index in range(len(omega)):
print('{0:1.2f} \t\t {1:4.4f} '.format(index, omega[index]))
volu = 0
ltotal = 0
for index, elem in enumerate(elementos):
# index é o elemento
area = 0.0013
x = nodes[elem[1]][1] - nodes[elem[2]][1]
y = nodes[elem[1]][2] - nodes[elem[2]][2]
z = nodes[elem[1]][3] - nodes[elem[2]][3]
L = np.sqrt(x**2+y**2+z**2)
ltotal+=L
volu += area*L
print('Volume da estrura: ',volu)
print('Tensão maxima: ', max(np.abs(tensoes)))
# %%