-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgotmturb.nml
304 lines (296 loc) · 11.2 KB
/
gotmturb.nml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
!$Id: gotmturb.inp,v 1.1 2006-03-19 10:12:58 hb Exp $
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
! What type of equations are solved in the turbulence model?
!
! turb_method -> type of turbulence closure
!
! 0: convective adjustment
! 1: analytical eddy visc. and diff. profiles, not coded yet
! 2: turbulence Model calculating TKE and length scale
! (specify stability function below)
! 3: second-order model (see "scnd" namelist below)
! 99: KPP model (requires "kpp.inp" with specifications)
!
!
! tke_method -> type of equation for TKE
!
! 1: algebraic equation
! 2: dynamic equation (k-epsilon style)
! 3: dynamic equation (Mellor-Yamada style)
!
!
! len_scale_method -> type of model for dissipative length scale
!
! 1: parabolic shape
! 2: triangle shape
! 3: Xing and Davies [1995]
! 4: Robert and Ouellet [1987]
! 5: Blackadar (two boundaries) [1962]
! 6: Bougeault and Andre [1986]
! 7: Eifler and Schrimpf (ISPRAMIX) [1992]
! 8: dynamic dissipation rate equation
! 9: dynamic Mellor-Yamada q^2l-equation
! 10: generic length scale (GLS)
!
!
! stab_method -> type of stability function
!
! 1: constant stability functions
! 2: Munk and Anderson [1954]
! 3: Schumann and Gerz [1995]
! 4: Eifler and Schrimpf [1992]
!
!-------------------------------------------------------------------------------
&turbulence
turb_method= 3,
tke_method= 2,
len_scale_method=8,
stab_method= 1
/
!-------------------------------------------------------------------------------
! What boundary conditions are used?
!
! k_ubc, k_lbc -> upper and lower boundary conditions
! for k-equation
! 0: prescribed BC
! 1: flux BC
!
! psi_ubc, psi_lbc -> upper and lower boundary conditions
! for the length-scale equation (e.g.
! epsilon, kl, omega, GLS)
! 0: prescribed BC
! 1: flux BC
!
!
! ubc_type -> type of upper boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
! 2: tke-injection (breaking waves)
!
! lbc_type -> type of lower boundary layer
! 0: viscous sublayer (not yet impl.)
! 1: logarithmic law of the wall
!
!-------------------------------------------------------------------------------
&bc
k_ubc= 1,
k_lbc= 1,
psi_ubc= 1,
psi_lbc= 1,
ubc_type= 1,
lbc_type= 1
/
!-------------------------------------------------------------------------------
! What turbulence parameters have been described?
!
! cm0_fix -> value of cm0 for turb_method=2
! Prandtl0_fix -> value of the turbulent Prandtl-number for stab_method=1-4
! cw -> constant of the wave-breaking model
! (Craig & Banner (1994) use cw=100)
! compute_kappa -> compute von Karman constant from model parameters
! kappa -> the desired von Karman constant (if compute_kappa=.true.)
! compute_c3 -> compute c3 (E3 for Mellor-Yamada) for given Ri_st
! Ri_st -> the desired steady-state Richardson number (if compute_c3=.true.)
! length_lim -> apply length scale limitation (see Galperin et al. 1988)
! galp -> coef. for length scale limitation
! const_num -> minimum eddy diffusivity (only with turb_method=0)
! const_nuh -> minimum heat diffusivity (only with turb_method=0)
! k_min -> minimun TKE
! eps_min -> minimum dissipation rate
! kb_min -> minimun buoyancy variance
! epsb_min -> minimum buoyancy variance destruction rate
!
!-------------------------------------------------------------------------------
&turb_param
cm0_fix= 0.5477,
Prandtl0_fix= 0.74,
cw= 100.,
compute_kappa= .true.,
kappa= 0.4,
compute_c3= .true.,
ri_st= 0.25,
length_lim= .false.,
galp= 0.53,
const_num= 5.e-4,
const_nuh= 5.e-4,
k_min= 1.e-10,
eps_min= 1.e-14
kb_min= 1.e-10,
epsb_min= 1.e-14
/
!-------------------------------------------------------------------------------
! The generic model (Umlauf & Burchard, J. Mar. Res., 2003)
!
! This part is active only, when len_scale_method=10 has been set.
!
! compute_param -> compute the model parameters:
! if this is .false., you have to set all
! model parameters (m,n,cpsi1,...) explicitly
! if this is .true., all model parameters
! set by you (except m) will be ignored and
! re-computed from kappa, d, alpha, etc.
! (see Umlauf&Burchard 2002)
!
! m: -> exponent for k
! n: -> exponent for l
! p: -> exponent for cm0
!
! Examples:
!
! k-epsilon (Rodi 1987) : m=3/2, n=-1, p=3
! k-omega (Umlauf et al. 2003) : m=1/2, n=-1, p=-1
!
! cpsi1 -> emp. coef. in psi equation
! cpsi2 -> emp. coef. in psi equation
! cpsi3minus -> cpsi3 for stable stratification
! cpsi3plus -> cpsi3 for unstable stratification
! sig_kpsi -> Schmidt number for TKE diffusivity
! sig_psi -> Schmidt number for psi diffusivity
!
!-------------------------------------------------------------------------------
&generic
compute_param= .false.,
gen_m= 1.5,
gen_n= -1.0,
gen_p= 3.0,
cpsi1= 1.44,
cpsi2= 1.92,
cpsi3minus= 0.0,
cpsi3plus = 0.0,
sig_kpsi= 1.0,
sig_psi= 1.3,
gen_d= -1.087,
gen_alpha= -4.97,
gen_l= 0.09
/
!-------------------------------------------------------------------------------
! The k-epsilon model (Rodi 1987)
!
! This part is active only, when len_scale_method=8 has been set.
!
! ce1 -> emp. coef. in diss. eq.
! ce2 -> emp. coef. in diss. eq.
! ce3minus -> ce3 for stable stratification, overwritten if compute_c3=.true.
! ce3plus -> ce3 for unstable stratification (Rodi 1987: ce3plus=1.0)
! sig_k -> Schmidt number for TKE diffusivity
! sig_e -> Schmidt number for diss. diffusivity
! sig_peps -> if .true. -> the wave breaking parameterisation suggested
! by Burchard (JPO 31, 2001, 3133-3145) will be used.
!-------------------------------------------------------------------------------
&keps
ce1= 1.44,
ce2= 1.92,
ce3minus= 0.0,
ce3plus= 1.0,
sig_k= 1.0,
sig_e= 1.3,
sig_peps= .false.
/
!-------------------------------------------------------------------------------
! The Mellor-Yamada model (Mellor & Yamada 1982)
!
! This part is active only, when len_scale_method=9 has been set!
!
! e1 -> coef. in MY q**2 l equation
! e2 -> coef. in MY q**2 l equation
! e3 -> coef. in MY q**2 l equation, overwritten if compute_c3=.true.
! sq -> turbulent diffusivities of q**2 (= 2k)
! sl -> turbulent diffusivities of q**2 l
! my_length -> prescribed barotropic lengthscale in q**2 l equation of MY
! 1: parabolic
! 2: triangular
! 3: lin. from surface
! new_constr -> stabilisation of Mellor-Yamada stability functions
! according to Burchard & Deleersnijder (2001)
! (if .true.)
!
!-------------------------------------------------------------------------------
&my
e1= 1.8,
e2= 1.33,
e3= 1.8,
sq= 0.2,
sl= 0.2,
my_length= 1,
new_constr= .false.
/
!-------------------------------------------------------------------------------
! The second-order model
!
! scnd_method -> type of second-order model
! 1: EASM with quasi-equilibrium
! 2: EASM with weak equilibrium, buoy.-variance algebraic
! 3: EASM with weak equilibrium, buoy.-variance from PDE
!
! kb_method -> type of equation for buoyancy variance
!
! 1: algebraic equation for buoyancy variance
! 2: PDE for buoyancy variance
!
!
! epsb_method -> type of equation for variance destruction
!
! 1: algebraic equation for variance destruction
! 2: PDE for variance destruction
!
!
! scnd_coeff -> coefficients of second-order model
!
! 0: read the coefficients from this file
! 1: coefficients of Gibson and Launder (1978)
! 2: coefficients of Mellor and Yamada (1982)
! 3: coefficients of Kantha and Clayson (1994)
! 4: coefficients of Luyten et al. (1996)
! 5: coefficients of Canuto et al. (2001) (version A)
! 6: coefficients of Canuto et al. (2001) (version B)
! 7: coefficients of Cheng et al. (2002)
!
!-------------------------------------------------------------------------------
&scnd
scnd_method= 2,
kb_method= 1,
epsb_method= 1,
scnd_coeff= 7,
cc1= 5.0,
cc2= 0.8000,
cc3= 1.9680,
cc4= 1.1360,
cc5= 0.0000,
cc6= 0.4000,
ct1= 5.9500,
ct2= 0.6000,
ct3= 1.0000,
ct4= 0.0000,
ct5= 0.3333,
ctt= 0.7200
/
!-------------------------------------------------------------------------------
! The internal wave model
!
! iw_model -> method to compute internal wave mixing
! 0: no internal waves mixing parameterisation
! 1: Mellor 1989 internal wave mixing
! 2: Large et al. 1994 internal wave mixing
!
! alpha -> coeff. for Mellor IWmodel (0: no IW, 0.7 Mellor 1989)
!
! The following six empirical parameters are used for the
! Large et al. 1994 shear instability and internal wave breaking
! parameterisations (iw_model = 2, all viscosities are in m**2/s):
!
! klimiw -> critcal value of TKE
! rich_cr -> critical Richardson number for shear instability
! numshear -> background diffusivity for shear instability
! numiw -> background viscosity for internal wave breaking
! nuhiw -> background diffusivity for internal wave breaking
!-------------------------------------------------------------------------------
&iw
iw_model= 0,
alpha= 0.0,
klimiw= 1e-6,
rich_cr= 0.7,
numshear= 5.e-3,
numiw= 1.e-4,
nuhiw= 1.e-5
/