forked from breizhn/DTLN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_weights_to_onnx.py
102 lines (85 loc) · 4.17 KB
/
convert_weights_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python3
"""
Script to covert a .h5 weights file of the DTLN model to ONNX.
At the moment the conversion only works with TF 2.1 and not on Mac.
Example call:
$python convert_weights_to_ONNX.py -m /name/of/the/model.h5 \
-t name_target
Author: Nils L. Westhausen (nils.westhausen@uol.de)
Version: 03.07.2020
This code is licensed under the terms of the MIT-license.
"""
from DTLN_model import DTLN_model, InstantLayerNormalization
import argparse
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Multiply, Conv1D
import tensorflow as tf
import keras2onnx
if __name__ == '__main__':
# arguement parser for running directly from the command line
parser = argparse.ArgumentParser(description='data evaluation')
parser.add_argument('--weights_file', '-m',
help='path to .h5 weights file')
parser.add_argument('--target_folder', '-t',
help='target folder for saved model')
args = parser.parse_args()
weights_file = args.weights_file
dtln_class = DTLN_model()
# check for type
if weights_file.find('_norm_') != -1:
norm_stft = True
num_elements_first_core = 2 + dtln_class.numLayer * 3 + 2
else:
norm_stft = False
num_elements_first_core = dtln_class.numLayer * 3 + 2
# build model
dtln_class.build_DTLN_model_stateful(norm_stft=norm_stft)
# load weights
dtln_class.model.load_weights(weights_file)
#### Model 1 ##########################
mag = Input(batch_shape=(1, 1, (dtln_class.blockLen//2+1)))
states_in_1 = Input(batch_shape=(1, dtln_class.numLayer, dtln_class.numUnits, 2))
# normalizing log magnitude stfts to get more robust against level variations
if norm_stft:
mag_norm = InstantLayerNormalization()(tf.math.log(mag + 1e-7))
else:
# behaviour like in the paper
mag_norm = mag
# predicting mask with separation kernel
mask_1, states_out_1 = dtln_class.seperation_kernel_with_states(dtln_class.numLayer,
(dtln_class.blockLen//2+1),
mag_norm, states_in_1)
model_1 = Model(inputs=[mag, states_in_1], outputs=[mask_1, states_out_1])
#### Model 2 ###########################
estimated_frame_1 = Input(batch_shape=(1, 1, (dtln_class.blockLen)))
states_in_2 = Input(batch_shape=(1, dtln_class.numLayer, dtln_class.numUnits, 2))
# encode time domain frames to feature domain
encoded_frames = Conv1D(dtln_class.encoder_size,1,strides=1,
use_bias=False)(estimated_frame_1)
# normalize the input to the separation kernel
encoded_frames_norm = InstantLayerNormalization()(encoded_frames)
# predict mask based on the normalized feature frames
mask_2, states_out_2 = dtln_class.seperation_kernel_with_states(dtln_class.numLayer,
dtln_class.encoder_size,
encoded_frames_norm,
states_in_2)
# multiply encoded frames with the mask
estimated = Multiply()([encoded_frames, mask_2])
# decode the frames back to time domain
decoded_frame = Conv1D(dtln_class.blockLen, 1, padding='causal',
use_bias=False)(estimated)
model_2 = Model(inputs=[estimated_frame_1, states_in_2],
outputs=[decoded_frame, states_out_2])
# set weights to submodels
weights = dtln_class.model.get_weights()
model_1.set_weights(weights[:num_elements_first_core])
model_2.set_weights(weights[num_elements_first_core:])
# convert first model
onnx_model = keras2onnx.convert_keras(model_1)
temp_model_file = args.target_folder + '_1.onnx'
keras2onnx.save_model(onnx_model, temp_model_file)
# convert second model
onnx_model = keras2onnx.convert_keras(model_2)
temp_model_file = args.target_folder + '_2.onnx'
keras2onnx.save_model(onnx_model, temp_model_file)
print('ONNX conversion complete!')