-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmatrix.py
126 lines (110 loc) · 3.81 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from random import randint
from copy import deepcopy
import numpy as np
class Matrix():
def __init__(self, lins, cols):
self.matrix = np.zeros((lins,cols), dtype=int)
self.dist = 0
self.previous = None
self.move = ""
self.cost = 0
def validNumbers(self, numbers):
valid = False
if len(numbers) == 9:
ref = list(range(9))
valid = True
for i in numbers:
if int(i) not in ref:
valid = False
else:
ref.remove(int(i))
return valid
def buildMatrix(self, str):
numbers = str.split(",")
if self.validNumbers(numbers):
i=0
for k in range(3):
for j in range(3):
self.matrix[k][j] = int(numbers[i])
i += 1
def searchBlock(self, value):
for k in range(3):
for j in range(3):
if self.matrix[k][j] == value:
return (k,j)
def moveup(self, zero):
self.matrix[zero[0]][zero[1]] = self.matrix[zero[0]-1][zero[1]]
self.matrix[zero[0]-1][zero[1]] = 0
def movedown(self, zero):
self.matrix[zero[0]][zero[1]] = self.matrix[zero[0]+1][zero[1]]
self.matrix[zero[0]+1][zero[1]] = 0
def moveright(self, zero):
self.matrix[zero[0]][zero[1]] = self.matrix[zero[0]][zero[1]+1]
self.matrix[zero[0]][zero[1]+1] = 0
def moveleft(self, zero):
self.matrix[zero[0]][zero[1]] = self.matrix[zero[0]][zero[1]-1]
self.matrix[zero[0]][zero[1]-1] = 0
def getPossibleNodes(self, moves):
zero = self.searchBlock(0)
possibleNodes = []
if zero[0] > 0:
self.moveup(zero)
moves.append("up")
possibleNodes.append(deepcopy(self))
zero = self.searchBlock(0)
self.movedown(zero)
zero = self.searchBlock(0)
if zero[0] < 2:
self.movedown(zero)
moves.append("down")
possibleNodes.append(deepcopy(self))
zero = self.searchBlock(0)
self.moveup(zero)
zero = self.searchBlock(0)
if zero[1] > 0:
self.moveleft(zero)
moves.append("left")
possibleNodes.append(deepcopy(self))
zero = self.searchBlock(0)
self.moveright(zero)
zero = self.searchBlock(0)
if zero[1] < 2:
self.moveright(zero)
moves.append("right")
possibleNodes.append(deepcopy(self))
zero = self.searchBlock(0)
self.moveleft(zero)
zero = self.searchBlock(0)
return possibleNodes
def getXY(self, value, matFinal = [[1,2,3],[4,5,6],[7,8,0]]):
for x in range(3):
for y in range(3):
if value == matFinal[x][y]:
return (x,y)
def manhattanDist(self):
res = 0
for i in range(3):
for j in range(3):
if self.matrix[i][j] != 0:
fi, fj = self.getXY(self.matrix[i][j])
res += abs(fi - i) + abs(fj - j)
self.dist = res
return res
def manhattanDistCost(self, Final):
res = 0
for i in range(3):
for j in range(3):
if self.matrix[i][j] != 0:
fi, fj = self.getXY(self.matrix[i][j], Final.matrix)
res += abs(fi - i) + abs(fj - j)
return res
def getMatrix(self):
return self.matrix
def isEqual(self, matrix):
return (self.matrix == matrix).all()
def setPrevious(self, p):
self.previous = p
def __cmp__(self, other):
return self.dist == other.dist
def __lt__(self, other):
return self.dist < other.dist