-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpectralSimilarityFigures.py
152 lines (106 loc) · 3.86 KB
/
SpectralSimilarityFigures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python
# coding: utf-8
# In[1]:
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib
import matplotlib.pyplot as plt
import pyteomics.mzxml as mzxml
import numpy as np
import scipy.interpolate
import os
# In[2]:
def snip_baseline_removal(original,width = 50):
""" Estimate, and then remove, the baseline from a data-set using the SNIP algorithm. """
# First, perform the non-linear stage
m = len(original)
data = np.log1p(np.log1p(np.sqrt(1.0 + np.abs(original))))
for k in range(width):
shifted = np.roll(data,k) + np.roll(data,-1 * k)
shifted[0:k] = data[0:k] + data[k:2 * k]
shifted[m - k : m] = data[m - k : m] + data[m - 2 * k: m - k]
data = np.minimum(0.5 * shifted, data)
# Undo the non-linear stage, and subtract the resulting estimate, and force positivity
adjusted = original - (np.square(np.expm1(np.expm1(data))) - 1.0)
least = min(adjusted)
if least < 0:
adjusted -= least
return adjusted + 1
def all_valid_mzxml(directory, low = 1010, high = 2390, points = 8000):
grid = np.linspace(low,high, points)
for i in os.listdir(directory):
if i[-5:] != 'mzXML':
continue
for x in mzxml.read(os.path.join(directory,i)):
mz, inten = x['m/z array'], x['intensity array']
if min(mz) > low or max(mz) < high:
print("Skipping")
continue
snipped_and_resampled = scipy.interpolate.griddata(mz, snip_baseline_removal(inten), grid)
snipped_and_resampled /= np.trapz(snipped_and_resampled)
yield i.split(';')[0], i, snipped_and_resampled
def group_by_label(gen):
labels = dict()
for label, file, spectra in gen:
if label not in labels:
labels[label] = []
labels[label].append((file, spectra))
return labels
datasets = dict()
for i in os.listdir("data"):
datasets[i] = group_by_label(all_valid_mzxml(os.path.join('data',i)))
# In[3]:
def matrix(comp, a,b):
ka, kb = list(sorted(a.keys())), list(sorted(b.keys()))
kb.reverse()
output = np.empty((len(ka), len(kb)))
for ia, aa in enumerate(ka):
for ib, bb in enumerate(kb):
output[ia,ib] = comp(a[aa], b[bb])
return output, ka, kb
def average_dot_product(p1, p2):
n = 0
acc = 0
for a in p1:
a = a[1]
for b in p2:
b = b[1]
acc += a.dot(b) / np.sqrt(a.dot(a) * b.dot(b))
n += 1
return acc / n
# In[4]:
def matrix_as_bubble(mat, k1, k2, l1, l2):
def purge_underscores(l):
return list(''.join(x.split('_')) for x in l)
n,m = mat.shape
x = np.empty(n * m)
y = np.empty_like(x)
s = np.empty_like(x)
k = 0
for i in range(n):
for j in range(m):
x[k] = i
y[k] = j
s[k] = mat[i,j]
k += 1
fig, ax = plt.subplots()
fig.set_size_inches(7,7)
for j in range(k):
sj = s[j]
if sj < 0.40:
continue
plt.text(x[j], y[j], str(sj)[0:4], fontsize=int(14 * sj), horizontalalignment='center'
,verticalalignment='center', color='white')
size = fig.get_size_inches()*fig.dpi
scale = 0.9 * (3.1415 / 4) * min(size[0]/n, size[1]/m) ** 2
plt.scatter(x,y, s * scale)
plt.xticks(range(n), purge_underscores(k1), rotation = 'vertical')
plt.yticks(range(m), purge_underscores(k2))
plt.ylabel(l2, fontsize = 20)
plt.xlabel(l1, fontsize = 20)
ax.xaxis.set_label_position('top')
ax.xaxis.tick_top()
# In[5]:
for name1, ds1 in datasets.items():
for name2, ds2 in datasets.items():
m, k1, k2 = matrix(average_dot_product, ds1, ds2)
matrix_as_bubble(m, k1, k2, name1, name2)