-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnorm-cpg.R
59 lines (49 loc) · 1.92 KB
/
norm-cpg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# From Jonathan Goeke
# Calculates normalized CpG frequencies for a set of sequences
norm_cpg <- function(seqs) {
require(BSgenome)
if (class(seqs) == "character") {
seqs <- DNAStringSet(seqs)
}
nf <- alphabetFrequency(seqs, baseOnly = TRUE, as.prob = TRUE)
dnf <- dinucleotideFrequency(seqs, as.prob = TRUE)
ncpg <- dnf[,"CG"] / pmax(0.00000000001, (((nf[,"G"] + nf[,"C"]) / 2)^2))
return(ncpg)
}
# From Matthias. Calculates some stats about CpG frequencies given a GR object
# specifying the regions and a BSgenome object specifying the genome
#' Computes GC content and CpGodd for a given GRanges object
#'
#' As a threshold between HCP and LCP a CpG odd ratio of .4 is a good approximation.
#'
#' You can construct a 3kb-flanking-TSS representation for a given set of granges with:
#'
#' require(BSgenome)
#' require(BSgenome.Hsapiens.UCSC.hg19)
#' require(GenomicFeatures)
#' granges.tss = flank(granges, 1500, start=T)
#'
#' computeCpGOddInGRanges( Hsapiens, granges.tss)
#'
cpg_GR <- function(genome, regions, threshold=.5) {
stopifnot(class(regions) == "GRanges")
chrom = as.character(GenomicRanges::seqnames(regions))
seq = getSeq(genome, chrom, start(regions), end(regions))
seq = DNAStringSet(seq)
# for each seq compute dinucleotide frequencies
cpg = dinucleotideFrequency(seq)
cpg = cpg[,"CG"] / apply(cpg, 1, sum)
# compute the expected cpg content as freq of c*g from same region
freq = oligonucleotideFrequency(seq, width=1)
expected = freq[,"C"] / rowSums(freq) * freq[,"G"] / rowSums(freq)
ratio = cpg / expected
cpg.status = c("lcpg", "hcpg")[as.numeric(ratio > threshold) + 1]
meta = elementMetadata(regions)
if ("ID" %in% colnames(meta)) {
id = meta[,"ID"]
} else {
id = 1:length(regions)
}
cpg.tab = data.frame(id=id, cpg, expected=as.numeric(expected), ratio, cpg.status, seq=as.character(seq), stringsAsFactors=F)
return(cpg.tab)
}