-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroutes.py
153 lines (141 loc) · 5.66 KB
/
routes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import pdb
from calls.models import *
from calls import db
from sqlalchemy import func
def locations():
locations = Location.query.all()
location_dict = [{'label': location.zip, 'value': location.id} for location in locations]
return location_dict
def boroughs():
# the number of times a complaint shows up in a borough
boroughs= Borough.query.all()
borough_dict=[{'label': borough.name, 'value': borough.id} for borough in boroughs]
return borough_dict
def agencies():
agencies = Agency.query.all()
agency_dict = [{'label': agency.name, 'value': agency.id} for agency in agencies]
return agency_dict
def complaints():
complaints = Complaint.query.all()
complaint_dict = [{'label':complaint.type, 'value':complaint.id} for complaint in complaints]
return complaint_dict
def filter_complaints(query,location_values=None):
if location_values:
query = query.filter(Complaint.location_id.in_(location_values))
return query
def complaint_histogram(location_values=None):
types_query = db.session.query(Complaint.type,func.count(Complaint.id)).group_by(Complaint.type)
filtered_complaints = filter_complaints(types_query,location_values=location_values)
complaint_counts = filtered_complaints.all()
# complaint_types = types_query.all()
x_values = [complaint_count[0] for complaint_count in complaint_counts]
y_values = [complaint_count[1] for complaint_count in complaint_counts]
# pdb.set_trace()
return {
'data': [
{
'x': x_values,
'y': y_values,
'name': 'Trace 1',
'type':'bar'
}
],
'layout': {'xaxis': {'range': [0, 7]}}
}
def borough_count_histogram():
location_query= db.session.query(Complaint.borough_name, func.count(Complaint.type)).group_by(Complaint.borough_name)
location_counts= location_query.all()
x_values = [location_count[0] for location_count in location_counts]
y_values = [location_count[1] for location_count in location_counts]
return {
'data': [
{
#'x': x_values,
'values': [location_count[1] for location_count in location_counts],
'labels': [location_count[0] for location_count in location_counts],
# 'name':
'type':'pie'
}
]
# 'layout': {'xaxis': {'range': [0, 10]}}
}
# def filter_borough(query,location_borough=None):
# if location_borough:
# query = query.filter(Complaint.borough_name.in_(location_borough))
# return query
#
# def borough_histogram(location_borough=None):
# # complaint_counts= db.session.query(Complaint.type,func.count(Complaint.id)).group_by(Complaint.type)
# types_query= db.session.query(Complaint.borough_name, Complaint.type ,func.count(Complaint.type)).group_by(Complaint.type)
# filtered_borough = filter_borough(types_query,location_borough= location_borough)
# b_counts = filtered_borough.all()
# # c_counts= complaint_counts.all()
#
# x_values = [b_count[1] for b_count in b_counts]
# y_values = [b_count[2] for b_count in b_counts]
#
# # pdb.set_trace()
# return {
# 'data': [
# {
# 'x': x_values,
# 'y': y_values,
# 'name': 'Trace 1',
# 'type':'bar'
# }
# ],
# 'layout': {'xaxis': {'range': [0, 7]}}
# }
# def filter_borough(query, borough_name):
# if borough_name:
# query = query.filter(Complaint.borough_name.in_(location_borough))
# return query
def borough_complaints():
m=db.session.query(Complaint.type, func.count(Complaint.type)).group_by(Complaint.type).filter(Complaint.borough_name=="MANHATTAN")
m_counts= m.all()
b=db.session.query(Complaint.type, func.count(Complaint.type)).group_by(Complaint.type).filter(Complaint.borough_name=="BROOKLYN")
b_counts= b.all()
c=db.session.query(Complaint.type, func.count(Complaint.type)).group_by(Complaint.type).filter(Complaint.borough_name=="BRONX")
c_counts= c.all()
d=db.session.query(Complaint.type, func.count(Complaint.type)).group_by(Complaint.type).filter(Complaint.borough_name=="QUEENS")
d_counts= d.all()
e=db.session.query(Complaint.type, func.count(Complaint.type)).group_by(Complaint.type).filter(Complaint.borough_name=="STATEN ISLAND")
e_counts= e.all()
# c_counts= complaint_counts.all()
mx_values = [m_count[0] for m_count in m_counts]
my_values = [m_count[1] for m_count in m_counts]
bx_values = [b_count[0] for b_count in b_counts]
by_values = [b_count[1] for b_count in b_counts]
cx_values = [c_count[0] for c_count in c_counts]
cy_values = [c_count[1] for c_count in c_counts]
dx_values = [d_count[0] for d_count in d_counts]
dy_values = [d_count[1] for d_count in d_counts]
ex_values = [e_count[0] for e_count in e_counts]
ey_values = [e_count[1] for e_count in e_counts]
# pdb.set_trace()
return {
'data': [
{'x': mx_values,
'y': my_values,
'name': 'Manhattan',
'type': 'bar'
},
{'x': bx_values,
'y': by_values,
'name': 'Brooklyn',
'type': 'bar'},
{'x': cx_values,
'y': cy_values,
'name': 'Bronx',
'type': 'bar'},
{'x': dx_values,
'y': dy_values,
'name': 'Queens',
'type': 'bar'},
{'x': ex_values,
'y': ey_values,
'name': 'Staten Island',
'type': 'bar'},
],
'layout': {'xaxis': {'range': [-.5, 7]}}
}