-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathknn.py
764 lines (751 loc) · 40.1 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
## LIBRARIES ##
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from poibin import PoiBin
import pytest
## IMPORT ML MODELS ##
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, log_loss, roc_auc_score, confusion_matrix, precision_recall_fscore_support
import xgboost as xgb
from sklearn.neighbors import KNeighborsClassifier
# ## CREATE FILE ##
# #This section initializes the file, gives it a title and a timestap
# now = datetime.datetime.now()
# unique_report = input('Enter Unique Report Identifier - ')
# fhand = open('OutcomeReport{}.txt'.format(unique_report), 'w+')
#
# # fhand_meta = open('MetaInfoForOutcomeReport{}.csv'.format(unique_report), 'w+')
# # with open('MetaInfoForOutcomeReport{}.csv'.format(unique_report), mode='w+') as csv_file:
# # writer = csv.writer(csv_file, delimiter=',')
#
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# fhand.write('SCOTUS Machine Learning Models Outcome Report {} \n\n'.format(unique_report))
# fhand.write(report_time)
# fhand.write('\n\n')
#
# ## DATA IMPORT & CLEANING ##
# # setting random seed
np.random.seed(9)
# import data and do initial cleaning
og_data = pd.read_csv('SCDB_2018_01_justiceCentered_Citation.csv', encoding = 'ISO-8859-1')
og_data = og_data.drop(columns = ['justice', 'docketId', 'caseIssuesId', 'voteId', 'dateDecision',
'usCite', 'sctCite', 'ledCite', 'lexisCite',
'docket', 'caseName', 'petitionerState', 'respondentState',
'adminActionState', 'caseOriginState',
'caseSourceState', 'declarationUncon',
'caseDispositionUnusual', 'partyWinning', 'voteUnclear',
'decisionDirectionDissent', 'authorityDecision1', 'authorityDecision2',
'lawSupp', 'lawMinor', 'majOpinWriter', 'majOpinAssigner',
'splitVote','firstAgreement', 'secondAgreement',
'dateArgument', 'dateRearg', 'petitioner', 'respondent',
'term', 'caseDisposition', 'decisionDirection',
'majVotes', 'minVotes', 'majority', 'vote', 'opinion',
'precedentAlteration', 'issue'])
# drop rows null for target column, fill in other nulls, and shift targrt column so sklearn recognizes it as binary
og_data = og_data.dropna(subset=['direction'])
og_data = og_data.fillna(int(999))
d2 = {1: 0, 2: 1}
og_data['direction'] = og_data['direction'].map(d2)
for c in og_data.columns:
og_data[c] = og_data[c].astype('category')
not_to_dummy = ['caseId', 'justiceName', 'direction']
wd_columns_to_dummy = list(og_data.columns)
for n in not_to_dummy:
wd_columns_to_dummy.remove(n)
# # save list of "features used"
# fhand.write('Features_used: {} \n\n'.format(wd_columns_to_dummy))
og_data = pd.get_dummies(og_data, columns = wd_columns_to_dummy)
print(og_data.shape)
# splitting all case data into top-level train and test sets
full_cases = pd.read_csv('SCDB_2018_01_caseCentered_Citation.csv', encoding = 'ISO-8859-1')
full_cases = full_cases.dropna(subset=['decisionDirection'])
full_cases = full_cases.fillna(int(999))
d = {1: 0, 2: 1, 3: 3}
full_cases['decisionDirection'] = full_cases['decisionDirection'].map(d)
# the line below is not strictly necessary as the formation of justice-level training data
# generally removes rows with no value for 'direction,' and these rows are precisely the ones with
# the value 3 in the 'decisionDirection' column
full_cases = full_cases[full_cases['decisionDirection'].isin([0,1])]
cases = full_cases['caseId']
full_cases_target = full_cases['decisionDirection']
full_cases_data = full_cases[wd_columns_to_dummy]
for c in full_cases_data.columns:
full_cases_data[c] = full_cases_data[c].astype('category')
full_cases_data = pd.get_dummies(full_cases_data)
full_cases_train, full_cases_test, full_cases_train_target, full_cases_test_target, master_train_case, master_test_case = train_test_split(full_cases_data, full_cases_target, cases)
# print("full_cases_train: ", full_cases_train.shape)
# print("full_cases_test: ", full_cases_test.shape)
# print("master_train_case: ", master_train_case.shape)
# print("master_test_case: ", master_test_case.shape)
test_outcomes = pd.DataFrame(data = full_cases_test_target.values, index = master_test_case.values)
# print("test_outcomes: ", test_outcomes.shape)
# case-centered model:
case_forest = KNeighborsClassifier(n_neighbors = 50)
case_forest.fit(full_cases_train, full_cases_train_target)
case_forest_train_predict = case_forest.predict(full_cases_train)
case_forest_test_predict = case_forest.predict(full_cases_test)
case_forest_train_score = case_forest.score(full_cases_train, full_cases_train_target)
case_forest_test_score = case_forest.score(full_cases_test, full_cases_test_target)
case_forest_train_probs = case_forest.predict_proba(full_cases_train)
case_forest_test_probs = case_forest.predict_proba(full_cases_test)
case_forest_train_log_loss = log_loss(full_cases_train_target, case_forest_train_probs[:,1])
case_forest_test_log_loss = log_loss(full_cases_test_target, case_forest_test_probs[:,1])
case_forest_train_roc_auc = roc_auc_score(full_cases_train_target, case_forest_train_probs[:,1])
case_forest_test_roc_auc = roc_auc_score(full_cases_test_target, case_forest_test_probs[:,1])
print('\nCase-based train accuracy: ', case_forest_train_score)
print('\nCase-based test accuracy: ', case_forest_test_score)
print('\nCase-based train AUC: ', case_forest_train_roc_auc)
print('\nCase-based test AUC: ', case_forest_test_roc_auc)
print('\nCase-based train log-loss: ', case_forest_train_log_loss)
print('\nCase-based test log-loss: ', case_forest_test_log_loss)
case_con_matrix = confusion_matrix(full_cases_test_target, case_forest_test_predict)
print('\nCase-based test confusion Matrix:\n', case_con_matrix)
precision, recall, fscore, support = precision_recall_fscore_support(full_cases_test_target, case_forest_test_predict)
percent_conservative = support[0]/(support[0] + support[1])
print('\nBased on ', support[0], ' conservative test decsions and ', support[1], ' liberal ones (', percent_conservative, ' conservative):')
print('\nConservatism Precision: ', precision[0], '\nConservatism Recall: ', recall[0], '\nConservatism F1: ', fscore[0])
print('\nLiberalism Precision: ', precision[1], '\nConservatism Recall: ', recall[1], '\nLiberalism F1: ', fscore[1])
# fhand.write("Case-based train accuracy: {}\n\n".format(case_forest_train_score))
# fhand.write("Case-based test accuracy: {}\n\n".format(case_forest_test_score))
# fhand.write("Case-based train AUC: {}\n\n".format(case_forest_train_roc_auc))
# fhand.write("Case-based test AUC: {}\n\n".format(case_forest_test_roc_auc))
# fhand.write("Case-based train log-loss: {}\n\n".format(case_forest_train_log_loss))
# fhand.write("Case-based test log-loss: {}\n\n".format(case_forest_test_log_loss))
# fhand.write("Case-based test confusion Matrix: {}\n\n".format(case_con_matrix))
# fhand.write('Based on {} conservative test decsions and {} liberal ones ({} conservative):'.format(support[0],support[1],percent_conservative))
# fhand.write('\nConservatism Precision: {}\nConservatism Recall: {}\nConservatism F1: {}'.format(precision[0],recall[0],fscore[0]))
# fhand.write('\nLiberalism Precision: {}\nLiberalism Recall: {}\nLiberalism F1: {}'.format(precision[1],recall[1],fscore[1]))
# ## INTIALIZING JUSITCE DATA ##
# justices = list(og_data.justiceName.unique())
# # use shorter list below for testing purposes
# # justices = ['RBGinsburg', 'AScalia', 'SAAlito']
#
# # properly narrow data for later ensemble
# working_train_data = og_data[og_data['caseId'].isin(list(master_train_case.values))]
# working_test_data = og_data[og_data['caseId'].isin(list(master_test_case.values))]
#
# # used at the end for ensemble method
# master_probas = pd.DataFrame(columns = justices, index = master_test_case.values)
#
# # Create list to hold meta_information lists for eventual DataFrame (and export)
# rounds_info_master = []
#
# ## MACHINE LEARNING MODELS - CLASSIFICATION ##
#
# fhand.write('Models will be run for {} justices\n\n'.format(len(justices)))
# now = datetime.datetime.now()
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# fhand.write(report_time)
#
# fhand.write('Random Forest Classifier tuned on:\n')
# fhand.write('n-estimators = [50, 250, 500]\n')
# fhand.write('max_depth = [5, 10, 15, 20, 25, 30]\n')
# fhand.write('for the roc_auc metric.\n\n')
#
# # fhand.write('XGBoostClassifier tuned on:\n')
# # fhand.write('alpha = [0.001, 0.01, 0.1, 0.2]\n')
# # fhand.write('n-estimators = [100, 200, 300]\n')
# # fhand.write('max_depth = [1, 2, 4, 6]\n')
# # fhand.write('for the roc_auc metric.\n\n')
#
# fhand.write('AdaBoost Classifier tuned on:\n')
# fhand.write('alpha = [0.001, 0.01, 0.1]\n')
# fhand.write('n-estimators = [100, 200, 300]\n')
# fhand.write('max_depth = [1, 3, 6]\n')
# fhand.write('for the roc_auc metric.\n\n')
#
# fhand.write('Support Vector Machine tuned on:\n')
# fhand.write('kernel = [linear, rbf, sigmoid]\n')
# fhand.write('c_value = [1, 5, 10, 25, 50, 75, 100]\n\n')
#
# # fhand.write('Logisstic Regression tuned on:\n')
# # fhand.write('kernel = [linear, rbf, sigmoid]\n')
# # fhand.write('c_value = [1, 5, 10, 25, 50, 75, 100]\n\n')
#
# model_run_count = 0
# print('')
# print('Start Time: ')
# print(report_time)
#
# for i in range(len(justices)):
#
# fhand.write('************************************************')
# fhand.write("\n\n")
#
# current_justice = justices[model_run_count]
#
# model_run_count += 1
#
# fhand.write('Model Set {} - Justice {}\n\n'.format(model_run_count, current_justice))
#
# # BUILD JUSTICE DATAFRAME #
# current_justice_train_df = working_train_data[working_train_data['justiceName'] == current_justice]
# current_justice_test_df = working_test_data[working_test_data['justiceName'] == current_justice]
# case_test = current_justice_test_df['caseId']
# current_justice_train_df = current_justice_train_df.drop(columns = ['caseId', 'justiceName'])
# current_justice_test_df = current_justice_test_df.drop(columns = ['caseId', 'justiceName'])
#
# #pull out target vector
# current_justice_target_train = current_justice_train_df['direction']
# current_justice_data_train = current_justice_train_df.drop(columns = ['direction'])
# current_justice_target_test = current_justice_test_df['direction']
# current_justice_data_test = current_justice_test_df.drop(columns = ['direction'])
#
# # INTIALIZING MODELS #
#
# ### Random Forest ###
# forest = RandomForestClassifier(n_estimators = 100, max_depth = 15)
# forest.fit(current_justice_data_train, current_justice_target_train)
#
# # Initial Outcome Metrics
# forest_initial_train_score = forest.score(current_justice_data_train, current_justice_target_train)
# forest_initial_test_score = forest.score(current_justice_data_test, current_justice_target_test)
#
# initial_forest_train_probs = forest.predict_proba(current_justice_data_train)
# initial_forest_test_probs = forest.predict_proba(current_justice_data_test)
#
# initial_forest_train_predict = forest.predict(current_justice_data_train)
# initial_forest_test_predict = forest.predict(current_justice_data_test)
#
# forest_initial_train_log_loss = log_loss(current_justice_target_train, initial_forest_train_probs[:,1])
# forest_initial_test_log_loss = log_loss(current_justice_target_test, initial_forest_test_probs[:,1])
#
# forest_initial_train_roc_auc = roc_auc_score(current_justice_target_train, initial_forest_train_probs[:,1])
# forest_initial_test_roc_auc = roc_auc_score(current_justice_target_test, initial_forest_test_probs[:,1])
#
# # Hyperparamater Tuning
#
# param_grid_forest = {'n_estimators' : [50, 250, 500, 1000], 'max_depth' : [5, 10, 15, 25]}
#
# # kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
#
# grid_search = GridSearchCV(forest, param_grid_forest, scoring = "accuracy", n_jobs = -1, cv = 4)
# grid_result = grid_search.fit(current_justice_data_train, current_justice_target_train)
#
# # Interpreting results
# forest_best_score = grid_result.best_score_
# forest_best_params = grid_result.best_params_
#
# # Reintializing model with best parameters
#
# forest = RandomForestClassifier(max_depth = forest_best_params['max_depth'], n_estimators = forest_best_params['n_estimators'])
#
# forest.fit(current_justice_data_train, current_justice_target_train)
#
# # Final Metrics
#
# forest_tuned_train_score = forest.score(current_justice_data_train, current_justice_target_train)
# forest_tuned_test_score = forest.score(current_justice_data_test, current_justice_target_test)
#
# tuned_forest_train_probs= forest.predict_proba(current_justice_data_train)
# tuned_forest_test_probs= forest.predict_proba(current_justice_data_test)
# probs_series = pd.DataFrame(data = tuned_forest_test_probs[:,1], index = case_test.index)
# probs_with_ids = pd.concat([probs_series, case_test], axis = 1)
# probs_with_ids.rename(columns={0:'probability'}, inplace = True)
# for ind, row in probs_with_ids.iterrows():
# case = row['caseId']
# probabil = row['probability']
# master_probas[current_justice].loc[case] = probabil
#
# tuned_forest_train_predict = forest.predict(current_justice_data_train)
# tuned_forest_test_predict = forest.predict(current_justice_data_test)
#
# forest_tuned_train_log_loss = log_loss(current_justice_target_train, tuned_forest_train_probs)
# forest_tuned_test_log_loss = log_loss(current_justice_target_test, tuned_forest_test_probs)
#
# forest_tuned_train_roc_auc = roc_auc_score(current_justice_target_train, tuned_forest_train_probs[:,1])
# forest_tuned_test_roc_auc = roc_auc_score(current_justice_target_test, tuned_forest_test_probs[:,1])
#
# # Write to file
#
# fhand.write("Random Forest Model Results\n\n")
#
# now = datetime.datetime.now()
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# fhand.write(report_time)
# fhand.write("\n\n")
#
# fhand.write("On default settings, Random Forest accuracy score on training data was {}\n\n".format(forest_initial_train_score))
#
# fhand.write("On default settings, Random Forest accuracy score on test data was {}\n\n".format(forest_initial_test_score))
#
# fhand.write("On default settings, Random Forest logloss on training set was {}\n\n".format(forest_initial_train_log_loss))
#
# fhand.write("On default settings, Random Forest logloss on test set was {}\n\n".format(forest_initial_test_log_loss))
#
# fhand.write("On default settings, Random Forest roc_auc on training set was {}\n\n".format(forest_initial_train_roc_auc))
#
# fhand.write("On default settings, Random Forest roc_auc on test set was {}\n\n".format(forest_initial_test_roc_auc))
#
# fhand.write("The best roc_auc score achieved by GridSearchCV was {}\nIt was achieved by setting max depth to {} and n_estimators to {}\n\n".format(forest_best_score, forest_best_params['max_depth'], forest_best_params['n_estimators']))
#
# fhand.write("Once tuned, Random Forest accuracy score on training data was {}\n\n".format(forest_tuned_train_score))
#
# fhand.write("Once tuned, Random Forest accuracy score on test data was {}\n\n".format(forest_tuned_test_score))
#
# fhand.write("Once tuned, Random Forest logloss on training set was {}\n\n".format(forest_tuned_train_log_loss))
#
# fhand.write("Once tuned, Random Forest logloss on test set was {}\n\n".format(forest_tuned_test_log_loss))
#
# fhand.write("Once tuned, Random Forest roc_auc on training set was {}\n\n".format(forest_tuned_train_roc_auc))
#
# fhand.write("Once tuned, Random Forest roc_auc on test set was {}\n\n".format(forest_tuned_test_roc_auc))
#
# fhand.write('-----------------------------------------')
# fhand.write("\n\n")
#
# ## XGBoost is ready but currently not on; needs work
#
# # ### XGBoost ###
# #
# # # Initialize Model
# #
# # xgboost = xgb.XGBClassifier()
# # xgboost.fit(current_justice_data_train, current_justice_target_train)
# #
# # # Initial Outcome Metrics
# #
# # xgboost_initial_train_score = xgboost.score(current_justice_data_train, current_justice_target_train)
# # xgboost_initial_test_score = xgboost.score(current_justice_data_test, current_justice_target_test)
# #
# # initial_xgboost_train_probs = xgboost.predict_proba(current_justice_data_train)
# # initial_xgboost_test_probs = xgboost.predict_proba(current_justice_data_test)
# #
# # initial_xgboost_train_predict = xgboost.predict(current_justice_data_train)
# # initial_xgboost_test_predict = xgboost.predict(current_justice_data_test)
# #
# # xgboost_initial_train_log_loss = log_loss(current_justice_target_train, initial_xgboost_train_probs)
# # xgboost_initial_test_log_loss = log_loss(current_justice_target_test, initial_xgboost_test_probs)
# #
# # xgboost_initial_train_roc_auc = roc_auc_score(current_justice_target_train, initial_xgboost_train_probs[:,1])
# # xgboost_initial_test_roc_auc = roc_auc_score(current_justice_target_test, initial_xgboost_test_probs[:,1])
# #
# # # Hyperparamater Tuning
# #
# # xgboost_alpha = [ 0.01, 0.1]
# # xgboost_n_estimators = [100, 200, 300]
# # xgboost_max_depth = [1, 3, 6]
# #
# # param_grid_xgboost = dict(n_estimators=xgboost_n_estimators, max_depth=xgboost_max_depth, learning_rate = xgboost_alpha)
# #
# # kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
# #
# # grid_search = GridSearchCV(xgboost, param_grid_xgboost, scoring="roc_auc", n_jobs=-1, cv=kfold)
# # grid_result = grid_search.fit(current_justice_data_train, current_justice_target_train)
# #
# # # Interpreting results
# # xgboost_best_score = grid_result.best_score_
# # xgboost_best_params = grid_result.best_params_
# #
# # # Reintializing model with best parameters
# #
# # xgboost = xgb.XGBClassifier(max_depth = xgboost_best_params['max_depth'], n_estimators = xgboost_best_params['n_estimators'], learning_rate = xgboost_best_params['learning_rate'])
# #
# # xgboost.fit(current_justice_data_train, current_justice_target_train)
# #
# # # Final Metrics
# #
# # xgboost_tuned_train_score = xgboost.score(current_justice_data_train, current_justice_target_train)
# # xgboost_tuned_test_score = xgboost.score(current_justice_data_test, current_justice_target_test)
# #
# # tuned_xgboost_train_probs= xgboost.predict_proba(current_justice_data_train)
# # tuned_xgboost_test_probs= xgboost.predict_proba(current_justice_data_test)
# #
# # tuned_xgboost_train_predict = xgboost.predict(current_justice_data_train)
# # tuned_xgboost_test_predict = xgboost.predict(current_justice_data_test)
# #
# # xgboost_tuned_train_log_loss = log_loss(current_justice_target_train, tuned_xgboost_train_probs)
# # xgboost_tuned_test_log_loss = log_loss(current_justice_target_test, tuned_xgboost_test_probs)
# #
# # xgboost_tuned_train_roc_auc = roc_auc_score(current_justice_target_train, tuned_xgboost_train_probs[:,1])
# # xgboost_tuned_test_roc_auc = roc_auc_score(current_justice_target_test, tuned_xgboost_test_probs[:,1])
# #
# # # Write to file
# #
# # fhand.write("XGBoost Model Results\n\n")
# #
# # now = datetime.datetime.now()
# # report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# # fhand.write(report_time)
# # fhand.write("\n\n")
# #
# # fhand.write("On default settings, XGBoost accuracy score on training data was {}\n\n".format(xgboost_initial_train_score))
# #
# # fhand.write("On default settings, XGBoost accuracy score on test data was {}\n\n".format(xgboost_initial_test_score))
# #
# # fhand.write("On default settings, XGBoost logloss on training set was {}\n\n".format(xgboost_initial_train_log_loss))
# #
# # fhand.write("On default settings, XGBoost logloss on test set was {}\n\n".format(xgboost_initial_test_log_loss))
# #
# # fhand.write("On default settings, XGBoost roc_auc on training set was {}\n\n".format(xgboost_initial_train_roc_auc))
# #
# # fhand.write("On default settings, XGBoost roc_auc on test set was {}\n\n".format(xgboost_initial_test_roc_auc))
# #
# # fhand.write("The best roc_auc score achieved by GridSearchCV was {}\nIt was achieved by setting alpha to {}, max depth to {}, and n_estimators to {}\n\n".format(xgboost_best_score, xgboost_best_params['learning_rate'], xgboost_best_params['max_depth'], xgboost_best_params['n_estimators']))
# #
# # fhand.write("Once tuned, XGBoost accuracy score on training data was {}\n\n".format(xgboost_tuned_train_score))
# #
# # fhand.write("Once tuned, XGBoost accuracy score on test data was {}\n\n".format(xgboost_tuned_test_score))
# #
# # fhand.write("Once tuned, XGBoost logloss on training set was {}\n\n".format(xgboost_tuned_train_log_loss))
# #
# # fhand.write("Once tuned, XGBoost logloss on test set was {}\n\n".format(xgboost_tuned_test_log_loss))
# #
# # fhand.write("Once tuned, XGBoost roc_auc on training set was {}\n\n".format(xgboost_tuned_train_roc_auc))
# #
# # fhand.write("Once tuned, XGBoost roc_auc on test set was {}\n\n".format(xgboost_tuned_test_roc_auc))
# #
# # fhand.write('-----------------------------------------')
# # fhand.write("\n\n")
#
#
#
# ### AdaBoost ###
#
# # Initialize Model
#
# adaboost = AdaBoostClassifier()
# adaboost.fit(current_justice_data_train, current_justice_target_train)
#
# # Initial Outcome Metrics
#
# adaboost_initial_train_score = adaboost.score(current_justice_data_train, current_justice_target_train)
# adaboost_initial_test_score = adaboost.score(current_justice_data_test, current_justice_target_test)
#
# initial_adaboost_train_probs = adaboost.predict_proba(current_justice_data_train)
# initial_adaboost_test_probs = adaboost.predict_proba(current_justice_data_test)
#
# initial_adaboost_train_predict = adaboost.predict(current_justice_data_train)
# initial_adaboost_test_predict = adaboost.predict(current_justice_data_test)
#
# adaboost_initial_train_log_loss = log_loss(current_justice_target_train, initial_adaboost_train_probs)
# adaboost_initial_test_log_loss = log_loss(current_justice_target_test, initial_adaboost_test_probs)
#
# adaboost_initial_train_roc_auc = roc_auc_score(current_justice_target_train, initial_adaboost_train_probs[:,1])
# adaboost_initial_test_roc_auc = roc_auc_score(current_justice_target_test, initial_adaboost_test_probs[:,1])
#
# # Hyperparamater Tuning
#
# param_grid_adaboost = {'learning_rate' : [0.001, 0.01, 0.1], 'n_estimators' : [100, 300, 600]}
#
# # kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
#
# grid_search = GridSearchCV(adaboost, param_grid_adaboost, scoring="roc_auc", n_jobs=-1, cv=4)
# grid_result = grid_search.fit(current_justice_data_train, current_justice_target_train)
#
# # Interpreting results
# adaboost_best_score = grid_result.best_score_
# adaboost_best_params = grid_result.best_params_
#
# # Reintializing model with best parameters
#
# adaboost = AdaBoostClassifier(n_estimators = adaboost_best_params['n_estimators'], learning_rate = adaboost_best_params['learning_rate'])
#
# adaboost.fit(current_justice_data_train, current_justice_target_train)
#
# # Final Metrics
#
# adaboost_tuned_train_score = adaboost.score(current_justice_data_train, current_justice_target_train)
# adaboost_tuned_test_score = adaboost.score(current_justice_data_test, current_justice_target_test)
#
# tuned_adaboost_train_probs= adaboost.predict_proba(current_justice_data_train)
# tuned_adaboost_test_probs= adaboost.predict_proba(current_justice_data_test)
#
# tuned_adaboost_train_predict = adaboost.predict(current_justice_data_train)
# tuned_adaboost_test_predict = adaboost.predict(current_justice_data_test)
#
# adaboost_tuned_train_log_loss = log_loss(current_justice_target_train, tuned_adaboost_train_probs)
# adaboost_tuned_test_log_loss = log_loss(current_justice_target_test, tuned_adaboost_test_probs)
#
# adaboost_tuned_train_roc_auc = roc_auc_score(current_justice_target_train, tuned_adaboost_train_probs[:,1])
# adaboost_tuned_test_roc_auc = roc_auc_score(current_justice_target_test, tuned_adaboost_test_probs[:,1])
#
# # Write to file
#
# fhand.write("AdaBoost Model Results\n\n")
#
# now = datetime.datetime.now()
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# fhand.write(report_time)
# fhand.write("\n\n")
#
# fhand.write("On default settings, AdaBoost accuracy score on training data was {}\n\n".format(adaboost_initial_train_score))
#
# fhand.write("On default settings, AdaBoost accuracy score on test data was {}\n\n".format(adaboost_initial_test_score))
#
# fhand.write("On default settings, AdaBoost logloss on training set was {}\n\n".format(adaboost_initial_train_log_loss))
#
# fhand.write("On default settings, AdaBoost logloss on test set was {}\n\n".format(adaboost_initial_test_log_loss))
#
# fhand.write("On default settings, AdaBoost roc_auc on training set was {}\n\n".format(adaboost_initial_train_roc_auc))
#
# fhand.write("On default settings, AdaBoost roc_auc on test set was {}\n\n".format(adaboost_initial_test_roc_auc))
#
# fhand.write("The best roc_auc score achieved by GridSearchCV was {}\nIt was achieved by setting learning_rate to {} and n_estimators to {}\n\n".format(adaboost_best_score, adaboost_best_params['learning_rate'], adaboost_best_params['n_estimators']))
#
# fhand.write("Once tuned, AdaBoost accuracy score on training data was {}\n\n".format(adaboost_tuned_train_score))
#
# fhand.write("Once tuned, AdaBoost accuracy score on test data was {}\n\n".format(adaboost_tuned_test_score))
#
# fhand.write("Once tuned, AdaBoost logloss on training set was {}\n\n".format(adaboost_tuned_train_log_loss))
#
# fhand.write("Once tuned, AdaBoost logloss on test set was {}\n\n".format(adaboost_tuned_test_log_loss))
#
# fhand.write("Once tuned, AdaBoost roc_auc on training set was {}\n\n".format(adaboost_tuned_train_roc_auc))
#
# fhand.write("Once tuned, AdaBoost roc_auc on test set was {}\n\n".format(adaboost_tuned_test_roc_auc))
#
# fhand.write('-----------------------------------------')
# fhand.write("\n\n")
#
# ### Support Vector Machine ###
#
# # Intialize Model
#
# svm_model = svm.SVC(probability=True, random_state=7)
# svm_model.fit(current_justice_data_train, current_justice_target_train)
#
# # Hyperparamater Tuning
#
# svm_model_kernel = ["linear", "rbf"]
# svm_model_C_value = [1, 5, 10, 25, 50, 75, 100]
#
# param_grid_svm_model = dict(C = svm_model_C_value, kernel = svm_model_kernel)
#
# # kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=7)
#
# grid_search = GridSearchCV(svm_model, param_grid_svm_model, scoring="roc_auc", n_jobs=-1, cv=4)
# grid_result = grid_search.fit(current_justice_data_train, current_justice_target_train)
#
# # Interpreting results
# svm_model_best_score = grid_result.best_score_
# svm_model_best_params = grid_result.best_params_
#
# # Reintializing model with best parameters
#
# svm_model = svm.SVC(C = svm_model_best_params['C'], kernel = svm_model_best_params['kernel'], probability=True, random_state=7)
#
# svm_model.fit(current_justice_data_train, current_justice_target_train)
#
# # Final Metrics
#
# svm_model_tuned_train_score = svm_model.score(current_justice_data_train, current_justice_target_train)
# svm_model_tuned_test_score = svm_model.score(current_justice_data_test, current_justice_target_test)
#
# tuned_svm_model_train_probs= svm_model.predict_proba(current_justice_data_train)
# tuned_svm_model_test_probs= svm_model.predict_proba(current_justice_data_test)
#
# svm_model_tuned_train_log_loss = log_loss(current_justice_target_train, tuned_svm_model_train_probs)
# svm_model_tuned_test_log_loss = log_loss(current_justice_target_test, tuned_svm_model_test_probs)
#
# svm_model_tuned_train_roc_auc = roc_auc_score(current_justice_target_train, tuned_svm_model_train_probs[:,1])
# svm_model_tuned_test_roc_auc = roc_auc_score(current_justice_target_test, tuned_svm_model_test_probs[:,1])
#
#
# fhand.write("Support Vector Machine Results\n\n")
#
# now = datetime.datetime.now()
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# fhand.write(report_time)
# fhand.write("\n\n")
#
# fhand.write("The best roc_auc score achieved by GridSearchCV was {}\nIt was achieved by setting C to {} and kernel type to {}\n\n".format(svm_model_best_score, svm_model_best_params['C'], svm_model_best_params['kernel']))
#
# fhand.write("Once tuned, SVM accuracy score on training data was {}\n\n".format(svm_model_tuned_train_score))
#
# fhand.write("Once tuned, SVM accuracy score on test data was {}\n\n".format(svm_model_tuned_test_score))
#
# fhand.write("Once tuned, SVM logloss on training set was {}\n\n".format(svm_model_tuned_train_log_loss))
#
# fhand.write("Once tuned, SVM logloss on test set was {}\n\n".format(svm_model_tuned_test_log_loss))
#
# fhand.write("Once tuned, SVM roc_auc on training set was {}\n\n".format(svm_model_tuned_train_roc_auc))
#
# fhand.write("Once tuned, SVM roc_auc on test set was {}\n\n".format(svm_model_tuned_test_roc_auc))
#
# fhand.write('-----------------------------------------')
# fhand.write("\n\n")
#
#
# ### Logistic Regression ###
#
# #
# # fhand.write("Logistic Regression Results\n\n")
# #
# # now = datetime.datetime.now()
# # report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# # fhand.write(report_time)
# # fhand.write("\n\n")
#
#
# # SAVE JUSTICE SPECIFIC OUTCOMES #
#
# # write meta analysis to a csv
# round_info = [current_justice, model_run_count, forest_initial_train_score, forest_initial_test_score, forest_initial_train_log_loss, forest_initial_test_log_loss, forest_initial_train_roc_auc, forest_initial_test_roc_auc, forest_best_score, forest_best_params['max_depth'], forest_best_params['n_estimators'], forest_tuned_train_score, forest_tuned_test_score, forest_tuned_train_log_loss, forest_tuned_test_log_loss, forest_tuned_train_roc_auc, forest_tuned_test_roc_auc, adaboost_initial_train_score, adaboost_initial_test_score, adaboost_initial_train_log_loss, adaboost_initial_test_log_loss, adaboost_initial_train_roc_auc, adaboost_initial_test_roc_auc, adaboost_best_score, adaboost_best_params['learning_rate'], adaboost_best_params['n_estimators'],
# adaboost_tuned_train_score, adaboost_tuned_test_score, adaboost_tuned_train_log_loss, adaboost_tuned_test_log_loss, adaboost_tuned_train_roc_auc, adaboost_tuned_test_roc_auc, svm_model_best_score, svm_model_best_params['C'], svm_model_best_params['kernel'], svm_model_tuned_train_score, svm_model_tuned_test_score, svm_model_tuned_train_log_loss, svm_model_tuned_test_log_loss, svm_model_tuned_train_roc_auc, svm_model_tuned_test_roc_auc]
#
# rounds_info_master.append(round_info)
#
# #xgboost meta tags
#
# # xgboost_initial_train_score, xgboost_initial_test_score, xgboost_initial_train_log_loss, xgboost_initial_test_log_loss, xgboost_initial_train_roc_auc, xgboost_initial_test_roc_auc, xgboost_best_score, xgboost_best_params['learning_rate'], xgboost_best_params['max_depth'],
# # xgboost_best_params['n_estimators'], xgboost_tuned_train_score, xgboost_tuned_test_score, xgboost_tuned_train_log_loss, xgboost_tuned_test_log_loss, xgboost_tuned_train_roc_auc, xgboost_tuned_test_roc_auc,
#
#
#
# #create lists of feature coefficients, then add id column info
#
# model_type = "RFT"
# forest_feature_import = list(forest.feature_importances_)
# forest_feature_import_with_id = ['{}-{}-{}'.format(current_justice, model_type, model_run_count)] + forest_feature_import
#
# # model_type = "XGB"
# # xgb_feature_import = list(xgboost.feature_importances_)
# # xgb_feature_import_with_id = ['{}-{}-{}'.format(current_justice, model_type, model_run_count)] + xgb_feature_import
#
# model_type = "ADA"
# ada_feature_import = list(adaboost.feature_importances_)
# ada_feature_import_with_id = ['{}-{}-{}'.format(current_justice, model_type, model_run_count)] + ada_feature_import
#
# # model_type = "SVM"
# # svm_feature_import = list(svm_model.feature_importances_)
# # svm_feature_import_with_id = ['{}-{}-{}'.format(current_justice, model_type, model_run_count)] + svm_feature_import
#
# # model_type = "LGR"
# # lgr_feature_import = list(logreg.feature_importances_)
# # lgr_feature_import_with_id = ['{}-{}-{}'.format(current_justice, model_type, model_run_count)] + lgr_feature_import
#
#
# feature_info_master = []
#
# feature_columns_info_master =[]
#
# feature_info_master.append(forest_feature_import_with_id)
# # feature_info_master.append(xgb_feature_import_with_id)
# feature_info_master.append(ada_feature_import_with_id)
# # feature_info_master.append(svm_feature_import_with_id)
# # feature_info_master.append(lgr_feature_import_with_id)
#
# features_as_a_list = list(current_justice_data_train.columns)
# features_master_columns = ['ID'] + features_as_a_list
# feature_columns_info_master.append(features_master_columns)
#
# feature_master = pd.DataFrame.from_records(feature_info_master, columns = feature_columns_info_master)
# feature_master.to_csv('OutcomeReport_{}_FeatureImportInfo{}.csv'.format(unique_report, current_justice), mode = 'w+')
#
# print("Round {} - Justice {} Done.\n".format(model_run_count, current_justice))
#
# now = datetime.datetime.now()
# report_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# print("At:" + report_time)
#
# # fhand.close()
#
#
#
# #Creating meta_information DataFrame for export to csv
#
# meta_master = pd.DataFrame.from_records(rounds_info_master, columns = ['JusticeName', 'Round',
# 'forest_initial_train_score', 'forest_initial_test_score', 'forest_initial_train_log_loss', 'forest_initial_test_log_loss', 'forest_initial_train_roc_auc', 'forest_initial_test_roc_auc', 'forest_best_score', 'forest_best_max_depth' , 'forest_best_n_estimators', 'forest_tuned_train_score', 'forest_tuned_test_score', 'forest_tuned_train_log_loss', 'forest_tuned_test_log_loss', 'forest_tuned_train_roc_auc', 'forest_tuned_test_roc_auc', 'adaboost_initial_train_score', 'adaboost_initial_test_score', 'adaboost_initial_train_log_loss', 'adaboost_initial_test_log_loss', 'adaboost_initial_train_roc_auc',
# 'adaboost_initial_test_roc_auc', 'adaboost_best_score', 'adaboost_best_learning_rate', 'adaboost_best_n_estimators', 'adaboost_tuned_train_score', 'adaboost_tuned_test_score', 'adaboost_tuned_train_log_loss', 'adaboost_tuned_test_log_loss', 'adaboost_tuned_train_roc_auc', 'adaboost_tuned_test_roc_auc', 'svm_model_best_score', 'svm_model_best_c', 'svm_model_best_kernel', 'svm_model_tuned_train_score', 'svm_model_tuned_test_score', 'svm_model_tuned_train_log_loss', 'svm_model_tuned_test_log_loss', 'svm_model_tuned_train_roc_auc', 'svm_model_tuned_test_roc_auc'])
#
#
# #xgboost meta column tags
#
# # 'xgboost_initial_test_score', 'xgboost_initial_train_log_loss', 'xgboost_initial_test_log_loss', 'xgboost_initial_train_roc_auc',
# # 'xgboost_initial_test_roc_auc', 'xgboost_best_score', 'xgboost_best_alpha', 'xgboost_best_max_depth', 'xgboost_best_n_estimators', 'xgboost_tuned_train_score', 'xgboost_tuned_test_score', 'xgboost_tuned_train_log_loss', 'xgboost_tuned_test_log_loss', 'xgboost_tuned_train_roc_auc', 'xgboost_tuned_test_roc_auc',
#
# meta_master.to_csv('OutcomeReport{}MetaInfo.csv'.format(unique_report), mode = 'w+')
#
# # feature_master.to_csv()
#
#
# for i in range(len(justices)):
# feature_master = pd.DataFrame.from_records(feature_info_master, columns = feature_columns_info_master)
# feature_master.to_csv('OutcomeReport_{}_FeatureImportInfo{}.csv'.format(unique_report, current_justice), mode = 'w+')
#
#
# master_probas = master_probas.fillna(2)
# ps = dict.fromkeys(list(master_probas.index.values), 0)
# for ind, row in master_probas.iterrows():
# lista = []
# for c in master_probas.columns:
# if row[c] != 2:
# lista.append(row[c])
# ps[ind] = lista
# outcomes = {}
# for k in ps.keys():
# pb = PoiBin(ps[k])
# if len(ps[k]) == 9:
# outcomes[k] = sum(pb.pmf([5, 6, 7, 8, 9]))
# elif len(ps[k]) == 8:
# outcomes[k] = sum(pb.pmf([5, 6, 7, 8]))
# elif len(ps[k]) == 7:
# outcomes[k] = sum(pb.pmf([4, 5, 6, 7]))
# elif len(ps[k]) == 6:
# outcomes[k] = sum(pb.pmf([4, 5, 6]))
# elif len(ps[k]) == 5:
# outcomes[k] = sum(pb.pmf([3, 4, 5]))
# elif len(ps[k]) == 4:
# outcomes[k] = sum(pb.pmf([3, 4]))
# elif len(ps[k]) == 3:
# outcomes[k] = sum(pb.pmf([2, 3]))
# elif len(ps[k]) == 2:
# outcomes[k] = sum(pb.pmf([2]))
# # as it happens, the minimum number of justices to vote in a case is 5
#
# # print("\n\nOutcomes: ", outcomes)
#
# probs = []
# case_outcomes = []
# for k,v in outcomes.items():
# probs.append(v)
# case_outcomes.append(test_outcomes.loc[k])
#
# predicted = []
# for prob in probs:
# if prob > 0.5:
# val = 1
# else:
# val = 0
# predicted.append(val)
#
# ensemble_acc = accuracy_score(case_outcomes, predicted)
# print("\nJustice-based test accuracy: ", ensemble_acc)
#
# ensemble_auc = roc_auc_score(case_outcomes, probs)
# print("\nJustice-based test AUC: ", ensemble_auc)
#
# probs2 = np.array(probs)
# case_outcomes2 = np.array(case_outcomes)
# ensemble_ll = log_loss(case_outcomes2, probs2)
# print("\nJustice-based test log-loss: ", ensemble_ll)
#
# cnf_matrix = confusion_matrix(case_outcomes, predicted)
# print('\nJustice-based test confusion Matrix:\n',cnf_matrix)
#
# precision, recall, fscore, support = precision_recall_fscore_support(case_outcomes, predicted)
# percent_conservative = support[0]/(support[0] + support[1])
# print('\nBased on ', support[0], ' conservative test decsions and ', support[1], ' liberal ones (', percent_conservative, ' conservative):')
# print('\nConservatism Precision: ', precision[0], '\nConservatism Recall: ', recall[0], '\nConservatism F1: ', fscore[0])
# print('\nLiberalism Precision: ', precision[1], '\nConservatism Recall: ', recall[1], '\nLiberalism F1: ', fscore[1])
#
# finish_time = now.strftime("%m-%d-%Y %I:%M:%S %p")
# print('\n\n', finish_time)
#
# fhand.write("Justice-based test accuracy: {}\n\n".format(ensemble_acc))
# fhand.write("Justice-based test AUC: {}\n\n".format(ensemble_auc))
# fhand.write("Justice-based test log-loss: {}\n\n".format(ensemble_ll))
# fhand.write("Justice-based test confusion Matrix: {}\n\n".format(cnf_matrix))
# fhand.write('Based on {} conservative test decsions and {} liberal ones ({} conservative):'.format(support[0],support[1],percent_conservative))
# fhand.write('\nConservatism Precision: {}\nConservatism Recall: {}\nConservatism F1: {}'.format(precision[0],recall[0],fscore[0]))
# fhand.write('\nLiberalism Precision: {}\nLiberalism Recall: {}\nLiberalism F1: {}'.format(precision[1],recall[1],fscore[1]))
fhand.close()
## MACHINE LEARNING MODELS - REGRESSION ##
# Using Miller-Quinn scores with accuracy data of justices