generated from mattrobball/2022_07_07-birs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
418 lines (407 loc) · 15.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<title>Generation in prime characteristic/a GUT for flops and derived categories</title>
<meta name="author" content="Matthew Ballard">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.0/dist/katex.min.css" integrity="sha384-Xi8rHCmBmhbuyyhbI88391ZKP2dmfnOl4rT9ZfRI7mLTdk1wblIUnrIq35nqwEvC" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.0/dist/katex.min.js" integrity="sha384-X/XCfMm41VSsqRNQgDerQczD69XqmjOOOwYQvr/uuC+j4OPoNhVgjdGFwhvN02Ja" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.0/dist/contrib/auto-render.min.js" integrity="sha384-+XBljXPPiv+OzfbB3cVmLHf4hdUFHlWNZN5spNQ7rmHTXpd7WvJum6fIACpNNfIR" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
// customised options
// • auto-render specific keys, e.g.:
delimiters: [
{left: '$$', right: '$$', display: true},
{left: '$', right: '$', display: false},
{left: '\\(', right: '\\)', display: false},
{left: '\\[', right: '\\]', display: true}
],
// • rendering keys, e.g.:
throwOnError : false
});
});
</script>
<link rel="stylesheet" href="dist/reset.css">
<link rel="stylesheet" href="dist/reveal.css">
<link rel="stylesheet" href="dist/theme/black.css">
<!-- Theme used for syntax highlighted code -->
<link rel="stylesheet" href="plugin/highlight/monokai.css">
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<h4>Generation in prime characteristic</h4>
<p>
<small><a href="mattrobball.com">Matthew Robert Ballard</a> <br>
Colloquium <br>
Auburn University <br>
November 4 2022
</small>
</p>
</section>
<section>
<p>Joint with <a href="patlank.com">Pat Lank</a><br>
Supported by the <a href="https://www.simonsfoundation.org">Simons Foundation</a></p>
</section>
<section>
<p>
Let's take $k$ to be a field, eg $$\mathbb{R}, \mathbb{C}, \mathbb{F}_p$$
</p>
</section>
<section>
Here is a more instructive example of a field to keep in mind.
Let $x$ be an indeterminant. Set
$$
\mathbb{F}_p(x) := \left\lbrace \frac{p(x)}{q(x)} \mid p(x), q(x) \text{ polynomials}
\right\rbrace
$$
So
$$
p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0,~ a_i \in \mathbb{F}_p
$$
</section>
<section>
We all remember from linear algebra that a $k$-vector space is completely determined
by a basis.<br> Precisely, any $v \in V$ can be written as
$$
v = \sum a_i e_i
$$
for unique $a_i \in k$ where $e_i$ are the basis vectors.
</section>
<section>
In particular, if $V$ and $W$ are two vector spaces each possessing bases with
the same number of elements we get an $k$-linear isomorphism
$$
A : V \overset{\sim}{\to} W
$$
</section>
<section>
A single number determines a (finite-dimensional) vector space.
</section>
<section>
<p>To classify $k$-vector spaces, we really just need to understand the
vector space $k$. If $\dim V = n$, then
$$
V = \underbrace{k \oplus \cdots \oplus k}_n
$$
We can build everything from $k$ up to sums (and isomorphisms).</p>
</section>
<section>
Let's enrich the structure a bit. Suppose instead of a single vector
space $V$, we consider pairs $(V,T)$ where $T : V \to V$ is a linear
map. <br><br>
Is there is a single number that determines such pairs completely? <br><br>
Are there basic building blocks?
</section>
<section>
There is natural universal object in algebra we can extract from such
pairs: the polynomial ring $k[x]$
$$
k[x] = \lbrace a_n x^n + \cdots + a_0 \mid a_i \in k \rbrace
$$
</section>
<section>
Why?
</section>
<section>
Given a polynomial $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, we
can plug in $T$ to obtain a linear map
$$
a_n T^n + \cdots + a_0 I : V \to V
$$
</section>
<section>
Conversely, any module $M$ over $k[x]$ is a just a pair a $k$-vector space
$M$ with an action of $x$ on $M$. <br><br>
In particular, we can take $k[x]$ itself. Multiplication by $x$ is a $k$-linear.
<br><br>
The module $k[x]$ is our simplest building block.
</section>
<section>
But not everything is a sum of copies of $k[x]$'s.
</section>
<section>
Suppose that $p(T)$ is the minimal polynomial of $$T: V \to V.$$ Then we know that
multiplication by $p(x)$ is identically $0$. <br><br>
Thus, the action of $k[x]$ factors through the quotient
$$
k[x] \to k[x]/(p(x))
$$
where we set polynomials of the form $q(x)p(x) = 0$.
</section>
<section>
But we still get our classification.
</section>
<section>
Any $(V,T)$ is isomorphic to
$$
k[x]^{\oplus a} \oplus \bigoplus \left(\frac{k[x]}{(q_i(x)^{e_i})}\right)^{\oplus b_i}
$$
where $q_i(x)$ are polynomials that cannot be factored.
</section>
<section>
Perhaps we need to allow for more building blocks?
</section>
<section>
No!! <br><br> We need more ways to build!
</section>
<section>
For example, each factor of the form $k[x]/(p(x))$ can be understood in terms of a
linear map between $k[x]$ and itself:
$$
k[x] \overset{p(x)}{\to} k[x]
$$
The cokernel of multiplication by $p(x)$ is exactly $k[x]/(p(x))$ and there is
no kernel.
</section>
<section>
We express this by decorating the map
$$
0 \to k[x] \overset{p(x)}{\to} k[x] \to k[x]/(p(x)) \to 0
$$
Then composing any pair of composable maps in the diagram will yield the zero
map.
</section>
<section>
Revisiting our classification: any finitely-generated $k[x]$-module is the cokernel of
a $k[x]$-linear map
$$
k[x]^{\oplus a} \overset{M}{\to} k[x]^{\oplus b}
$$
Here $M$ can be written a matrix with entries in $k[x]$.
</section>
<section>
How about two commuting linear endomorphisms of $V$?
</section>
<section>
We have to add one more indeterminant to our polynomial ring $k[x,y]$ and we
have to allow our exact complexes to be one arrow longer:
$$
0 \to F_{-2} \overset{d_{-1}}{\to} F_{-1} \overset{d_0}{\to} F_0 \overset{\phi}{\to} M \to 0
$$
where $F_i = k[x]^{n_i}$ and
$$
\phi \circ d_0 = d_0 \circ d_{-1} = d_{-1} \circ d_0 = 0
$$
And moreover $\operatorname{ker} d_i = \operatorname{im} d_{i-1}$.
</section>
<section>
<b>Theorem</b>(Hilbert). More generally, any finitely-generated $k[x_1,\ldots,x_n]$-module $M$ fits into an
exact complex of the form
$$
0 \to F_{-n} \to \cdots \to F_{-1} \to F_0 \to M \to 0
$$
</section>
<section>
The structure of these resolutions can be very complex but they are ultimately a
finite amount of linear algebraic data.
</section>
<section>
Suppose instead that we only cared about $$T : V \to V$$ satisfying $T^2 = 0$.
<br><br> So
$k[x]/(x^2)$ are our basic building blocks with which we want to understand all
other modules. <br><br>
In particular, let's try to understand the module $k$ where $x$ acts by $0$.
</section>
<section>
We could seemingly start with what we know
$$
0 \to k[x] \overset{x}{\to} k[x] \to k \to 0
$$
and just mod out by $x^2$ everywhere
$$
0 \to \frac{k[x]}{(x^2)} \overset{x}{\to} \frac{k[x]}{(x^2)} \to k \to 0
$$
but something has gone wrong.
</section>
<section>
We have lost exactness. The map
$$
\frac{k[x]}{(x^2)} \overset{x}{\to} \frac{k[x]}{(x^2)}
$$
is no longer injective. <br><br>
Can we fix it?
</section>
<section>
The kernel is $kx \subset k[x]/(x^2)$. So we need surject onto that
$$
\frac{k[x]}{(x^2)} \overset{x}{\to}\frac{k[x]}{(x^2)} \overset{x}{\to} \frac{k[x]}{(x^2)}
$$
</section>
<section>
There is still kernel of this map.
The kernel is $kx \subset k[x]/(x^2)$. So we need surject onto that
$$
\frac{k[x]}{(x^2)} \overset{x}{\to}\frac{k[x]}{(x^2)} \overset{x}{\to} \frac{k[x]}{(x^2)}
$$
</section>
<section>
There is still kernel of this map.
The kernel is $kx \subset k[x]/(x^2)$. So we need surject onto that
$$
\frac{k[x]}{(x^2)} \overset{x}{\to}\frac{k[x]}{(x^2)} \overset{x}{\to} \frac{k[x]}{(x^2)}
$$
</section>
<section>
Uh oh.
</section>
<section>
There is no finite resolution of $k$ as $k[x]/(x^2)$-module.
</section>
<section>
Things get much worse. <br><br> Try taking the resolution of $k$ as a $k[x,y,z]/(xy,yz)$-module.
</section>
<section>
<b>Theorem</b>(Auslander-Buchsbaum-Serre). Suppose $R = k[x_1,\ldots,x_n]/(f_1,\ldots,f_s)$.
Then $k$ has a finite resolution as an $R$-module if and only if there is a there is a non-vanshing minor
of size $\operatorname{codim} R$ in the matrix $(\partial f_i/\partial x_j)$.
</section>
<section>
So, for singular $R$, there is no finite amount of linear algebra data that builds
an $R$-module $M$ from $R$ in general.
</section>
<section>
When $p = 0$ in our field $k$, there is a magic map: the Frobenius map.
$$
x \mapsto x^p
$$
</section>
<section>
For example,
$$
(x+y)^p = x^p + \sum \binom{p}{j} x^jy^{p-j} + y^p \\
= x^p + y^p
$$
</section>
<section>
In characteristic $p$, given a $k$-vector space $V$, we get a new one $V^{(p)}$ by declaring that
$$
a \cdot v := a^p v
$$
This is not the same in general.
</section>
<section>
Pull back out the field $\mathbb{F}_p(x)$ from the start. Note that
$$
\mathbb{F}_p(x)^{(p)} \not \cong \mathbb{F}_p(x)
$$
but
$$
\mathbb{F}_p^{(p)} = \mathbb{F}_p
$$
</section>
<section>
For a ring $R$ with characteristic $p$, we say it is $F$-finite if $R^{(p)}$ is a
finitely-generated $R$-module. <br><br>
For example, if $R = \mathbb{F}_p[x]$, then
$$
R^{(p)} = \mathbb{F}_p[x^p] \oplus x \mathbb{F}_p[x^p] \oplus \cdots \oplus
x^{p-1} \mathbb{F}_p[x^p]
$$
</section>
<section>
We've seen that if $R$ are our basic building blocks then we cannot construct
all modules using a finite amount of linear algebra data in general. <br><br>
Can we do better with $R^{(p)}$?
</section>
<section>
<b>Theorem</b>(B.-Lank). For $F$-finite rings, yes. <br><br>
Independently, Iyengar-Mukhopadhyay-Pollitz also.
</section>
<section>
Let's look at our problematic example: $$\mathbb{F}_p[x]/(x^2)$$
Then
$$
\mathbb{F}_p[x]/(x^2)^{(p)} \cong \mathbb{F}_p \oplus \mathbb{F}_p x
$$
and $x$ acting via multiplication of $x^p$ acts by $0$. So the above
is an isomorphism of modules.
</section>
<section>
We've got $\mathbb{F}_p$ as a summand of $R^{(p)}$ already.
</section>
<section>
In general, $R^{(p^e)}$ generates the derived category $D^b(\operatorname{mod} R)$
for any $F$-finite Noetherian ring $R$. <br><br>
In other words, building finite complexes out of $R^{(p^e)}$ gives all modules.
(Indeed all complexes.) Moreover, there is a <i>uniform</i> bound on the length
of the complex necessary.
</section>
<section>
Using $R^{(p^e)}$ as our basic building blocks, everything is build from a finite
amount of linear algebraic data, restoring the nice situation for regular rings.
</section>
<section>
More generally, high enough Frobenius pushforwards of bounded complexes of
finite rank vector bundles generate $D^b(\operatorname{coh} X)$ for an $F$-finite
Noetherian scheme.
</section>
<section>
Thanks for your attention.
</section>
<section data-background-image="assets/images/Dock_with_Trees_0.jpg">
<p> AMS Mathematical Research Community <br>
<a href="https://www.ams.org/programs/research-communities/2023MRC-DerivedCategories">
Derived Categories, Arithmetic, and Geometry</a> <br>
June 4-10 2023
</p>
</section>
<section data-background-image="assets/images/Dock_with_Trees_0.jpg">
<h4 style="color:black"> Organizers </h4>
<a href="http://mattrobball.com">
<img src="https://www.matthewrobertballard.com/assets/img/prof_pic.jpg"
style="height:200px"></a>
<a href="https://www.sfu.ca/~khonigs/">
<img src="https://www.sfu.ca/content/sfu/math/people/faculty/khonigs.img.-838256229.png"
style="height:200px"></a>
<a href="http://dkrashen.org">
<img src="https://github.com/dkrashen/dkrashen.github.io/blob/master/images/maxpicofme.jpg?raw=true"
style="height:200px" ></a>
<a href="http://alicialamarche.com">
<img src="http://alicialamarche.com/assets/img/face.JPG" style="height:200px"></a>
<a href="https://www.imo.universite-paris-saclay.fr/~macri">
<img src="https://www.imo.universite-paris-saclay.fr/~macri/emolo.jpg"
style="height:200px"></a>
<br>
<h4> Mentors </h4>
<a href="http://pbelmans.ncag.info">
<img src="https://pbelmans.ncag.info/assets/photo.jpg" style="height:200px"></a>
<a href="<http://www-personal.umich.edu/~arper/">
<img src="http://www-personal.umich.edu/~arper/arp.jpg" style="height:200px"></a>
<a href="http://www.mat.unimi.it/users/pertusi/">
<img src="assets/images/pertusi.jpg" style="height:200px"></a>
<a href="https://pcwww.liv.ac.uk/~arizzard/">
<img src="https://www.liverpool.ac.uk/media/livacuk/maths/images/staffimages/rizzardo.jpg" style="height:200px"></a>
<!-- <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/c/ce/Question-mark-face.jpg/512px-Question-mark-face.jpg" -->
<!-- style="height:200px"> -->
</section>
<section data-background-image="assets/images/Dock_with_Trees_0.jpg">
<p> Applications are open!!</a>
</section>
</div>
</div>
<script src="dist/reveal.js"></script>
<script src="plugin/notes/notes.js"></script>
<script src="plugin/markdown/markdown.js"></script>
<script src="plugin/highlight/highlight.js"></script>
<script>
// More info about initialization & config:
// - https://revealjs.com/initialization/
// - https://revealjs.com/config/
Reveal.initialize({
hash: true,
// Learn about plugins: https://revealjs.com/plugins/
plugins: [ RevealMarkdown, RevealHighlight, RevealNotes ]
});
</script>
<!-- Mermaid for diagrams maybe? -->
<!-- <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> -->
<!-- <script> -->
<!-- mermaid.initialize({ startOnLoad: true }); -->
<!-- </script> -->
</body>
</html>