-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodulation_recognition_hennequin_direct_input.py
151 lines (141 loc) · 4.84 KB
/
modulation_recognition_hennequin_direct_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from spiking_radio_reservoir import *
from utils.dataset import load_dataset
from utils.reservoir import getTauCurrent, getAhpTauCurrent
from utils.modulator import AsynchronousDeltaModulator, modulate
np.random.seed(42)
# Set brian2 extra compilation arguments
prefs.devices.cpp_standalone.extra_make_args_unix = ["-j6"]
# Import dataset and prepare samples
# - modulations:
# '8PSK', 'BPSK', 'QPSK',
# 'QAM16', 'QAM64',
# 'CPFSK', 'GFSK',
# 'AM-DSB', 'AM-SSB',
# 'PAM4', 'WBFM'
print("- Importing dataset")
settings = {
'snr': 18,
'modulations': ['8PSK', 'BPSK', 'QPSK', 'PAM4', 'GFSK', 'CPFSK', 'AM-SSB'],
'scale': 50,
'num_samples': 50,
'time_sample': np.arange(128),
'thrup': 0.1,
'thrdn': 0.1,
'resampling_factor': 200,
'stretch_factor': 1000,
'stop_after': 10000,
'stop_neuron': 4,
'pause': 500
}
tot_num_samples = settings['num_samples']*len(settings['modulations'])
dataset, _ = load_dataset('./data/radioML/RML2016.10a_dict.pkl', snr=settings['snr'], scale=settings['scale'])
# Define delta modulators
modulator = [
AsynchronousDeltaModulator(settings['thrup'], settings['thrdn'], settings['resampling_factor']),
AsynchronousDeltaModulator(settings['thrup'], settings['thrdn'], settings['resampling_factor'])
]
# Prepare stimulus
print("- Preparing input stimulus")
indices = []
times = []
Y = []
stimulation = (len(settings['time_sample'])*settings['stretch_factor']/1e3)*ms
duration = (stimulation+settings['pause']*ms)*settings['num_samples']*len(settings['modulations'])
to = 0.0*ms
for (i, mod) in tqdm(enumerate(settings['modulations'])):
for j in range(settings['num_samples']):
sample = dataset[(mod, settings['snr'])][j]
ix, tx, _, _ = modulate(modulator[0], modulator[1], settings['time_sample'], sample, \
resampling_factor=settings['resampling_factor'], \
stretch_factor=settings['stretch_factor'])
tx = tx*us + to
stop_time = tx[-1]+settings['stop_after']*ms
indices.extend(ix)
indices.append(settings['stop_neuron'])
times.extend(tx)
times.append(stop_time)
Y.append(i)
to = (stimulation+settings['pause']*ms)*(i*settings['num_samples']+j+1)
print("\t * total duration: {}s".format(duration))
# Create experiment folder
exp_name = 'mod_rec_hennequin_direct_input'
exp_dir = './experiments/{}-{}'.format(exp_name, datetime.now().strftime("%Y-%m-%dT%H-%M"))
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
# Define reservoir parameters
params = {
'wInp': 500,
'pIR': 0.07,
'pE_local': 0.5,
'pI_local': 1.0,
'k': 3,
'DoC': 0.2,
'loc_wResE': 120,
'scale_wResE': 20,
'loc_wResI': -250,
'scale_wResI': 40,
'Ninp': 4,
'N': 800,
'Ngx': 20,
'Ngy': 20
}
# Plots
plot_flags = {
'raster': False,
'result': True,
'network': True,
'weights': True,
'weights3D': False,
'similarity': True,
'currents': True,
'accuracy': True
}
# Setup connectivity of the network
connectivity = setup_hennequin_connectivity(params['N'], params['pIR'], params['Ngx'], params['Ngy'], \
params['pE_local'], params['pI_local'], params['k'], params['DoC'], \
params['loc_wResE'], params['scale_wResE'], params['loc_wResI'], params['scale_wResI'])
# Set currents
num_syn = len(connectivity['res_res']['w'])
params['currents'] = {
'gRes': {
'Iahp': 1*pA,
'Itauahp': getAhpTauCurrent(10*ms),
'Itau': getTauCurrent(20*ms),
'Ispkthr': 0.2*nA
},
'sInpRes': {
'Ie_tau': getTauCurrent(7*ms)
},
'sResRes': {
'Ie_tau': getTauCurrent(7*ms),
'Ii_tau': getTauCurrent(7*ms)
}
}
# Set mismatch
params['mismatch'] = {
'gRes': {
'Itau': 0.1,
'Ispkthr': 0.2
},
'sResRes': {
'Ie_tau': 0.1,
'Ii_tau': 0.1,
}
}
# Store all the parameters and settings
settings_path = exp_dir + '/conf.txt'
with open(settings_path, 'w+') as f:
f.write('Model parameters: \n')
for (key, value) in params.items():
f.write('- {}: {}\n'.format(key, value))
f.write('Preprocessing settings: \n')
for (key, value) in settings.items():
f.write('- {}: {}\n'.format(key, value))
# Run experiment
score = experiment(wGen=None, wInp=params['wInp'], connectivity=connectivity, mismatch=params['mismatch'], \
N=params['N'], Ninp=params['Ninp'], currents=params['currents'], Ngx=params['Ngx'], Ngy=params['Ngy'], \
direct_input=True, indices=indices, times=times, stretch_factor=settings['stretch_factor'], \
duration=duration, ro_time=stimulation+settings['pause']*ms, \
modulations=settings['modulations'], snr=settings['snr'], num_samples=settings['num_samples'], Y=Y, \
plot=plot_flags, store=True, title=exp_name, exp_dir=exp_dir, dt=50*us, remove_device=True)
print(score)