-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcompEffScoreCorr.py
183 lines (146 loc) · 5.71 KB
/
compEffScoreCorr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# compare guide specificity scores against ot counts
# based on compareMitCrisporSpecScore.py
from annotateOffs import *
import matplotlib.pyplot as plt
from collections import defaultdict
from os.path import isfile
import pickle
# save time-intensive scores between invocations
TMPFNAME = "/tmp/guideSpecScores.pickle"
# size expansion factor for bubbles
BUBBLEFAC = 200.0
def parseOtCounts(fname):
" return a tuple of two dicts strongOtCount, weakOtCounts each guideName -> int "
strongOffs = defaultdict(int)
weakOffs = defaultdict(int)
otShareSum = defaultdict(float)
for row in iterTsvRows(fname):
rf = float(row.readFraction)
if rf>0.01:
strongOffs[row.name]+=1
#if rf>0.001:
weakOffs[row.name]+=1
otShareSum[row.name]+=rf
return strongOffs, weakOffs, otShareSum
def makePlot(xVals, yVals, areas, markerChar):
weaks = plt.scatter(xVals, yVals, \
alpha=.7, \
edgecolor='none', \
marker=markerChar, \
s=areas)
#strongs = plt.scatter(xValsCrispor, yValsStrong, \
#alpha=.5, \
#marker="o", \
#s=20)
#mitWeak = plt.scatter(xValsMit, yValsWeak, \
#alpha=.5, \
#marker="x", \
#s=areas)
plt.xticks(range(0, 101, 10))
plt.xlim(0,100)
plt.ylim(0,70)
legPlots = []
for frac in [0.001, 0.005, 0.01, 0.05, 0.10, 0.30, 0.5, 0.7, 0.9]:
legPlots.append(
plt.scatter([],[], s=BUBBLEFAC*frac, edgecolors='none', marker=markerChar),
)
#plt.gca().add_artist(leg1)
#plt.legend([weaks, mitWeak],
##["all off-targets", "off-targets <1%"],
#["CRISPOR", "crispr.mit.org"],
#scatterpoints=1,
#loc='upper left',
#ncol=1,
#fontsize=12)
#plt.ylim(0,40)
return legPlots
def parseSpecScores(fname):
" parse a file with (seq,specScore) and return a list 0,10 with the counts for each bin "
print "parsing", fname
hist = [0] * 10
totalCount = 0
for line in open(fname):
score = int(line.rstrip("\n").split()[1])
if score==100:
score=99
binIdx = score/10
hist[binIdx]+=1
totalCount += 1
xVals = range(0, 100, 10)
yVals = [100*(float(x)/totalCount) for x in hist]
return xVals, yVals
def main():
maxMismatches = 4
guideValidOts, guideSeqs = parseOfftargets("out/annotFiltOfftargets.tsv", maxMismatches, False, None)
strongOtCounts, weakOtCounts, otShareSum = parseOtCounts("out/annotFiltOfftargets.tsv")
histXVals, histYVals = parseSpecScores("wholeGenome/specScores.tab")
if not isfile(TMPFNAME):
crisporOffs = parseCrispor("crisporOfftargets", guideSeqs, maxMismatches)
mitOffs = parseMit("mitOfftargets", guideSeqs)
scoreCache = {}
else:
print "Not recalculating guide scores. Reading guide scores from %s" % TMPFNAME
scoreCache = pickle.load(open(TMPFNAME))
ofh = open("out/specScoreVsOtCount.tsv", "w")
headers = ["guide", "CRISPORSpecScore", "MITSpecScore", "strongOtCount", "weakOtCount"]
ofh.write("\t".join(headers)+"\n")
xValsCrispor = []
xValsMit = []
yValsWeak = []
yValsStrong = []
areas = [] # size of the dots in the plot, one per xVal
rows = []
for guideName, guideSeq in guideSeqs.iteritems():
if guideName in scoreCache:
mitScore, crisporScore = scoreCache[guideName]
else:
mitScore = calcMitGuideScore_offs(guideSeq, mitOffs[guideSeq])
crisporScore = calcMitGuideScore_offs(guideSeq, crisporOffs[guideSeq])
scoreCache[guideName] = (mitScore, crisporScore)
weakOtCount = weakOtCounts[guideName]
strongOtCount = strongOtCounts[guideName]
row = [guideName, crisporScore, mitScore, weakOtCount, strongOtCount]
xValsCrispor.append(crisporScore)
xValsMit.append(mitScore)
yValsWeak.append(weakOtCount)
yValsStrong.append(strongOtCount)
areas.append(200.0*otShareSum[guideName])
row = [str(x) for x in row]
rows.append(row)
rows.sort()
for row in rows:
ofh.write( "\t".join(row)+'\n')
ofh.close()
print "output written to %s" % ofh.name
pickle.dump(scoreCache, open(TMPFNAME, "w"))
axy1 = plt.figure(figsize=(10,5))
axy1 = plt.subplot(121)
makePlot(xValsMit, yValsWeak, areas, "o")
plt.xlabel("MIT Specificity Score")
plt.ylabel("Number of off-targets")
ax2 = plt.subplot(122, sharey=axy1)
plt.setp( ax2.get_yticklabels(), visible=False)
#plt.ylim(0,60)
plt.ylabel("Off-targets found per guide sequence", color="blue")
legPlots = makePlot(xValsCrispor, yValsWeak, areas, "o")
# add legend
leg1 = plt.legend(legPlots, ["0.1%", "0.5%", "1%", "5%", "10%", "30%", "50%", "70%", "90%"],
#loc='upper right',
bbox_to_anchor=(1.15, 1), loc=2, borderaxespad=0., \
ncol=1,
fontsize=10, scatterpoints=1, title="Sum of\noff-target\nmodification\nfrequencies")
plt.setp(leg1.get_title(),fontsize='small')
xlab = plt.xlabel("Specificity Score")
# add 2nd y axis
ax2 = plt.twinx()
ax2.set_ylabel('Frequency of specificity in exons (unique 20mers)', color="grey")
plt.bar(histXVals, histYVals, 10, edgecolor='white', color="lightblue" , alpha=0.5, lw=1)
plt.tight_layout()
#plt.tight_layout()
# plt.subplots_adjust(hspace=0) # doesn't work
plotFname = "out/specScoreVsOtCount.pdf"
plt.savefig(plotFname, format = 'pdf', bbox_extra_artists=(leg1,xlab), bbox_inches='tight')
plt.savefig(plotFname.replace(".pdf", ".png"), bbox_extra_artists=(leg1,), bbox_inches='tight')
print "wrote plot to %s, added .png" % plotFname
plt.close()
main()