-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPowerRomDasm.py
332 lines (291 loc) · 12.9 KB
/
PowerRomDasm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
'''
Power Macintosh ROM disassembler.
Author: Max Poliakovski 2020-2021
Usage:
python3 PowerRomDasm.py --rom_path=[path to a Power Macintosh ROM dump]
'''
from argparse import ArgumentParser
from ruamel.yaml import YAML
from capstone import *
from capstone.m68k import *
import os
import struct
def bit_not(n, numbits=32):
return (1 << numbits) - 1 - n
def align(n, m):
return (n + m - 1) & bit_not(m - 1)
''' Capstone-based disassembler for 68k code.'''
class M68KDasm:
def __init__(self, cb):
self.rom_cb = cb
self.cse = Cs(CS_ARCH_M68K, CS_MODE_M68K_040)
self.cse.detail = True
self.labels = {}
def dasm_single(self, address, code):
''' Disassble single 68k instruction with the Capstone engine. '''
# detect A-Traps and disassemble them ourselves
if (code[0] & 0xF0) == 0xA0:
from mactraps import TRAP_TABLE
trap_num = (code[0] << 8) | code[1]
if trap_num in TRAP_TABLE:
return ((TRAP_TABLE[trap_num], [], 2))
else:
return (('dc.w', [hex(trap_num)], 2))
# disassemble non-trap instructions with Capstone
instrs = self.cse.disasm(code, address)
return next(instrs)
def dasm_region(self, addr, size, data):
pp_dasm = []
last_addr = addr + size
offset = 0
while addr < last_addr:
# prefetch binary data (2 >= bytes <= 10) for the next instruction
bin_length = min(last_addr - addr, 10)
bin_prefetch = bytearray()
for i in range(bin_length):
bin_prefetch.append(data[offset+i])
instr = self.dasm_single(addr, bin_prefetch)
if not isinstance(instr, CsInsn):
pp_dasm.append({'addr': addr, 'mnem': instr[0], 'ops': instr[1]})
addr += instr[2]
offset += instr[2]
continue
op_list = instr.op_str.split(',')
#print(op_list)
ops = []
for op in instr.operands:
#print(op.type)
if op.type == M68K_OP_MEM:
#print(op.address_mode)
if op.address_mode == M68K_AM_PCI_DISP:
ea = addr + op.mem.disp + 2
flag,sym = self.rom_cb.get_symbol(ea)
if flag:
ops.append(sym)
else:
label = 'l_{:x}'.format(ea)
ops.append(label)
if ea not in self.labels:
self.labels[ea] = label
# discard current op because we've just replaced it
op_list.pop(0)
elif op.address_mode == M68K_AM_PCI_INDEX_BASE_DISP:
ops.append(instr.op_str)
else:
ops.append(op_list.pop(0))
elif op.type == M68K_OP_BR_DISP:
if op.address_mode == M68K_AM_BRANCH_DISPLACEMENT:
ea = addr + op.br_disp.disp + 2
flag,sym = self.rom_cb.get_symbol(ea)
if flag:
ops.append(sym)
else:
label = 'l_{:x}'.format(ea)
ops.append(label)
if ea not in self.labels:
self.labels[ea] = label
# discard current op because we've just replaced it
op_list.pop(0)
else:
ops.append(op_list.pop(0))
else:
ops.append(op_list.pop(0))
pp_dasm.append({'addr': addr, 'mnem': instr.mnemonic, 'ops': ops})
addr += instr.size
offset += instr.size
#print(ops)
#print(self.labels)
for instr in pp_dasm:
if instr['addr'] in self.labels:
print('\n' + self.labels[instr['addr']] + ':')
print(hex(instr['addr']).ljust(15), end='')
print(instr['mnem'], '\t', end='')
print(','.join(instr['ops']))
class ROMDisassembler:
def __init__(self, rom_data, rom_db):
self.rom_data = rom_data
self.rom_db = rom_db
self.start_addr = rom_db['main_info']['phys_addr']
self.m68k_dasm = M68KDasm(self)
def get_symbol(self, addr):
offset = addr - self.start_addr
if offset in self.rom_db['annot_items']:
return (True, self.rom_db['annot_items'][offset]['label'])
else:
return (False, '')
def fmt_single_entry(self, format, size, offset):
print(hex(self.start_addr + offset).ljust(15), end='')
if format == 'hex':
if size == 1:
print("dc.b\t0x%X" % struct.unpack('>B', self.rom_data[offset:offset+1]))
elif size == 2:
print("dc.w\t0x%X" % struct.unpack('>H', self.rom_data[offset:offset+2]))
elif size == 4:
print("dc.l\t0x%X" % struct.unpack('>I', self.rom_data[offset:offset+4]))
else:
print("INVALID SIZE!")
elif format == 'dec':
if size == 1:
print("dc.b\t%d" % struct.unpack('>B', self.rom_data[offset:offset+1]))
elif size == 2:
print("dc.w\t%d" % struct.unpack('>H', self.rom_data[offset:offset+2]))
elif size == 4:
print("dc.l\t%d" % struct.unpack('>I', self.rom_data[offset:offset+4]))
else:
print("INVALID SIZE!")
elif format == 'offset':
dest_offset = struct.unpack('>I', self.rom_data[offset:offset+4])[0]
if dest_offset in self.rom_db['annot_items']:
symbol = self.rom_db['annot_items'][dest_offset]['label']
print("dc.l\t" + symbol + '-BaseOfRom')
else:
print("dc.l\t0x%X" % dest_offset)
def dasm_regions(self, start_addr, size, data, regions):
self.labels = {}
for reg in regions:
if reg[2] == 'align':
print(hex(start_addr + reg[0]).ljust(15), end='')
print('align\t' + str(reg[3]))
elif reg[2] == 'code':
reg_size = reg[1] - reg[0] + 1
self.m68k_dasm.dasm_region(start_addr + reg[0], reg_size,
data[reg[3]:reg[3]+reg_size])
elif reg[2] == 'int':
print("")
print((reg[1] + ':').ljust(15))
self.fmt_single_entry(reg[3], reg[4], reg[0])
else:
print("Unknown region type " + reg[2])
def parse_subregs(self, start, size, subregs):
#print("This entry has subregions", subregs)
regs = []
reg_start = start
for reg in subregs:
if reg['type'] == 'align':
offset = reg['offset']
if offset < reg_start or offset >= (start + size):
print("Invalid subregion offset: 0x%X" % offset)
return regs
regs.append((reg_start, offset - 1, 'code', reg_start - start))
boundary = reg['boundary']
reg_end = align(offset, boundary)
regs.append((offset, reg_end - 1, 'align', boundary))
reg_start = reg_end
print("reg_start=%d" % reg_start)
elif reg['type'] == 'int':
offset = reg['offset']
if offset < reg_start or offset >= (start + size):
print("Invalid subregion offset: 0x%X" % offset)
return regs
regs.append((reg_start, offset - 1, 'code', reg_start - start))
reg_size = reg['size']
if 'label' in reg:
label = reg['label']
else:
label = 'l_{:x}'.format(self.start_addr + offset)
self.m68k_dasm.labels[self.start_addr + offset] = label
regs.append((offset, label, 'int', reg['format'], reg_size))
reg_start = offset + reg_size
else:
print("Unknown subregion type " + reg['type'])
return regs
if reg_start < (start + size):
regs.append((reg_start, (start + size) - 1, 'code', reg_start - start))
#print(regs)
return regs
def fmt_array(self, entry, offset):
count = entry['size'] // entry['elsize']
for i in range(count):
self.fmt_single_entry(entry['format'], entry['elsize'], offset)
offset += entry['elsize']
def parse_struct(self, fields, offset):
size_acc = 0
for field in fields:
if field['type'] == 'int':
self.fmt_single_entry(field['format'], field['size'], offset)
elif field['type'] == 'array':
self.fmt_array(field, offset)
else:
print("Unknown struct field type %s" % field['type'])
offset += field['size']
size_acc += field['size']
return size_acc
def fmt_entry(self, entry, offset):
print("")
if entry['type'] == 'align':
start = offset
end = align(start, entry['boundary'])
print(hex(self.start_addr + start).ljust(15), end='')
print('align\t' + str(entry['boundary']))
return end - start
print((entry['label'] + ':').ljust(15))
if entry['type'] == 'array':
self.fmt_array(entry, offset)
elif entry['type'] == 'int':
self.fmt_single_entry(entry['format'], entry['size'], offset)
elif entry['type'] == 'code':
size = entry['size']
if entry['arch'] == '68k':
if 'subregs' in entry:
regs = self.parse_subregs(offset, size, entry['subregs'])
else:
regs = [(offset, offset + size - 1, 'code', 0)]
self.dasm_regions(self.start_addr, size, self.rom_data[offset:offset+size], regs)
elif entry['arch'] == 'ppc':
print("PPC disassembler not implemented yet")
else:
print("Unknown code region architecture " + entry['arch'])
elif entry['type'] == 'fixlenstr': # fixed-length string
print(hex(self.start_addr + offset).ljust(15), end='')
str_len = entry['size']
fmt_str = '%is' % str_len
print('"%s"' % struct.unpack(fmt_str, self.rom_data[offset:offset+str_len])[0].decode('mac_roman'))
elif entry['type'] == 'struct':
return self.parse_struct(entry['fields'], offset)
return entry['size']
def dasm_region(self, start, end):
offset = start
while offset < end:
if offset in self.rom_db['annot_items']:
entry = self.rom_db['annot_items'][offset]
size = self.fmt_entry(entry, offset)
offset += size
else:
print(hex(self.start_addr + offset).ljust(15), end='')
print("dc.b\t0x%X" % struct.unpack('>B', self.rom_data[offset:offset+1]))
offset += 1
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--rom_path', type=str,
dest='rom_path',
help='path to a PowerMacintosh ROM file to process',
metavar='ROM_PATH', required=True)
parser.add_argument('--start', type=lambda x: int(x,0),
dest='start_offs', default=0,
help='offset to the start of the region to disassemble',
required=False,
)
parser.add_argument('--end', type=lambda x: int(x,0),
dest='end_offs', default=0x500,
help='offset to the end of the region to disassemble',
required=False,
)
opts = parser.parse_args()
with open(opts.rom_path, 'rb') as rom_file:
rom_file.seek(0, 2)
rom_size = rom_file.tell()
if rom_size != (4 * 1024 * 1024):
print("Invalid ROM file size %d (expected 4 MB)" % rom_size)
# just load the whole ROM image into memory
rom_file.seek(0, 0)
rom_data = rom_file.read()
check_sum = struct.unpack('>I', rom_data[0:4])[0]
print("ROM Checksum: %X" % check_sum)
my_path = os.path.dirname(os.path.realpath(__file__))
db_name = 'ROMDB_' + '{:x}'.format(int(check_sum)).upper() + '.yaml'
with open(my_path + '/database/' + db_name, 'rb') as db_file:
yaml = YAML()
annot_db = yaml.load(db_file)
print(annot_db['main_info']['name'])
rdasm = ROMDisassembler(rom_data, annot_db)
rdasm.dasm_region(opts.start_offs, opts.end_offs)