-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathtrain.py
executable file
·134 lines (108 loc) · 4.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from torch.autograd import Variable
from utils import *
from model import *
import time
import math
import argparse
cuda = True if torch.cuda.is_available() else False
parser = argparse.ArgumentParser()
parser.add_argument('-content', help='Content input')
parser.add_argument('-content_weight', help='Content weight. Default is 1e2', default = 1e2)
parser.add_argument('-style', help='Style input')
parser.add_argument('-style_weight', help='Style weight. Default is 1', default = 1)
parser.add_argument('-epochs', type=int, help='Number of epoch iterations. Default is 20000', default = 20000)
parser.add_argument('-print_interval', type=int, help='Number of epoch iterations between printing losses', default = 1000)
parser.add_argument('-plot_interval', type=int, help='Number of epoch iterations between plot points', default = 1000)
parser.add_argument('-learning_rate', type=float, default = 0.002)
parser.add_argument('-output', help='Output file name. Default is "output"', default = 'output')
args = parser.parse_args()
CONTENT_FILENAME = args.content
STYLE_FILENAME = args.style
a_content, sr = wav2spectrum(CONTENT_FILENAME)
a_style, sr = wav2spectrum(STYLE_FILENAME)
a_content_torch = torch.from_numpy(a_content)[None, None, :, :]
if cuda:
a_content_torch = a_content_torch.cuda()
print(a_content_torch.shape)
a_style_torch = torch.from_numpy(a_style)[None, None, :, :]
if cuda:
a_style_torch = a_style_torch.cuda()
print(a_style_torch.shape)
model = RandomCNN()
model.eval()
a_C_var = Variable(a_content_torch, requires_grad=False).float()
a_S_var = Variable(a_style_torch, requires_grad=False).float()
if cuda:
model = model.cuda()
a_C_var = a_C_var.cuda()
a_S_var = a_S_var.cuda()
a_C = model(a_C_var)
a_S = model(a_S_var)
# Optimizer
learning_rate = args.learning_rate
a_G_var = Variable(torch.randn(a_content_torch.shape) * 1e-3)
if cuda:
a_G_var = a_G_var.cuda()
a_G_var.requires_grad = True
optimizer = torch.optim.Adam([a_G_var])
# coefficient of content and style
style_param = args.style_weight
content_param = args.content_weight
num_epochs = args.epochs
print_every = args.print_interval
plot_every = args.plot_interval
# Keep track of losses for plotting
current_loss = 0
all_losses = []
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
start = time.time()
# Train the Model
for epoch in range(1, num_epochs + 1):
optimizer.zero_grad()
a_G = model(a_G_var)
content_loss = content_param * compute_content_loss(a_C, a_G)
style_loss = style_param * compute_layer_style_loss(a_S, a_G)
loss = content_loss + style_loss
loss.backward()
optimizer.step()
# print
if epoch % print_every == 0:
print("{} {}% {} content_loss:{:4f} style_loss:{:4f} total_loss:{:4f}".format(epoch,
epoch / num_epochs * 100,
timeSince(start),
content_loss.item(),
style_loss.item(), loss.item()))
current_loss += loss.item()
# Add current loss avg to list of losses
if epoch % plot_every == 0:
all_losses.append(current_loss / plot_every)
current_loss = 0
gen_spectrum = a_G_var.cpu().data.numpy().squeeze()
gen_audio_C = args.output + ".wav"
spectrum2wav(gen_spectrum, sr, gen_audio_C)
plt.figure()
plt.plot(all_losses)
plt.savefig('loss_curve.png')
plt.figure(figsize=(5, 5))
# we then use the 2nd column.
plt.subplot(1, 1, 1)
plt.title("Content Spectrum")
plt.imsave('Content_Spectrum.png', a_content[:400, :])
plt.figure(figsize=(5, 5))
# we then use the 2nd column.
plt.subplot(1, 1, 1)
plt.title("Style Spectrum")
plt.imsave('Style_Spectrum.png', a_style[:400, :])
plt.figure(figsize=(5, 5))
# we then use the 2nd column.
plt.subplot(1, 1, 1)
plt.title("CNN Voice Transfer Result")
plt.imsave('Gen_Spectrum.png', gen_spectrum[:400, :])