-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters.py
39 lines (31 loc) · 2.04 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from rec_rank.recommendation_algorithms import UserkNN, MostPopular, BPR, ImplicitMF, ItemkNN
from lenskit.datasets import ML100K, ML1M
import numba
class ParametersForMovieLens100k:
# If you want better performance, you need to config numba, for example
# numba.config.THREADING_LAYER = "tbb"
name = "experiments_on_MovieLens_100k"
dataset = ML100K()
rec_number = 10 # number of recommendations
number_of_trails = 100 # trails for Optuna parameters tuning
use_cached_files = True
fusion_norm = "min-max" # normalization strategy: https://amenra.github.io/ranx/normalization/#Normalization
rec_algorithms = [ItemkNN, ImplicitMF, UserkNN, MostPopular, BPR]
# names and aliases of fusion methods can be found here: https://amenra.github.io/ranx/fusion/#supported-fusion-algorithms
unsupervised_fusion_methods = ["min", "med", "anz", "log_isr", "bordafuse", "condorcet", "max", "sum", "mnz", "isr"]
supervised_fusion_methods = ["gmnz", "rrf", "slidefuse", "bayesfuse", "wmnz", "rbc", "logn_isr", "posfuse", "wsum",
"w_bordafuse"]
class ParametersForMovieLens1M:
# If you want better performance, you need to config numba, for example
# numba.config.THREADING_LAYER = "tbb"
name = "experiments_on_MovieLens_1M"
dataset = ML1M()
rec_number = 10 # number of recommendations
number_of_trails = 100 # trails for Optuna parameters tuning
use_cached_files = True
fusion_norm = "min-max" # normalization strategy: https://amenra.github.io/ranx/normalization/#Normalization
rec_algorithms = [ItemkNN, ImplicitMF, UserkNN, MostPopular, BPR]
# names and aliases of fusion methods can be found here: https://amenra.github.io/ranx/fusion/#supported-fusion-algorithms
unsupervised_fusion_methods = ["min", "med", "anz", "log_isr", "bordafuse", "condorcet", "max", "sum", "mnz", "isr"]
supervised_fusion_methods = ["gmnz", "rrf", "slidefuse", "bayesfuse", "wmnz", "rbc", "logn_isr", "posfuse", "wsum",
"w_bordafuse"]