forked from twitter/the-algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProducerEmbeddingsFromInterestedIn.scala
701 lines (597 loc) · 24.7 KB
/
ProducerEmbeddingsFromInterestedIn.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
package com.twitter.simclusters_v2.scalding.embedding
import com.twitter.dal.client.dataset.KeyValDALDataset
import com.twitter.scalding._
import com.twitter.scalding_internal.dalv2.DALWrite._
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
import com.twitter.simclusters_v2.common.ModelVersions
import com.twitter.simclusters_v2.hdfs_sources._
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil._
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
import com.twitter.simclusters_v2.thriftscala._
import com.twitter.wtf.scalding.jobs.common.{AdhocExecutionApp, ScheduledExecutionApp}
import java.util.TimeZone
object ProducerEmbeddingsFromInterestedInBatchAppUtil {
import ProducerEmbeddingsFromInterestedIn._
val user = System.getenv("USER")
val rootPath: String = s"/user/$user/manhattan_sequence_files"
// Helps speed up the multiplication step which can get very big
val numReducersForMatrixMultiplication: Int = 12000
/**
* Given the producer x cluster matrix, key by producer / cluster individually, and write output
* to individual DAL datasets
*/
def writeOutput(
producerClusterEmbedding: TypedPipe[((ClusterId, UserId), Double)],
producerTopKEmbeddingsDataset: KeyValDALDataset[KeyVal[Long, TopSimClustersWithScore]],
clusterTopKProducersDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
],
producerTopKEmbeddingsPath: String,
clusterTopKProducersPath: String,
modelVersion: ModelVersion
): Execution[Unit] = {
val keyedByProducer =
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
.map { case (userId, clusters) => KeyVal(userId, clusters) }
.writeDALVersionedKeyValExecution(
producerTopKEmbeddingsDataset,
D.Suffix(producerTopKEmbeddingsPath)
)
val keyedBySimCluster = fromSimClusterEmbedding(
producerClusterEmbedding,
topKUsersToKeep,
modelVersion
).map {
case (clusterId, topProducers) => KeyVal(clusterId, topProducersToThrift(topProducers))
}
.writeDALVersionedKeyValExecution(
clusterTopKProducersDataset,
D.Suffix(clusterTopKProducersPath)
)
Execution.zip(keyedByProducer, keyedBySimCluster).unit
}
}
/**
* Base class for Fav based producer embeddings. Helps reuse the code for different model versions
*/
trait ProducerEmbeddingsFromInterestedInByFavScoreBase extends ScheduledExecutionApp {
import ProducerEmbeddingsFromInterestedIn._
import ProducerEmbeddingsFromInterestedInBatchAppUtil._
def modelVersion: ModelVersion
val producerTopKEmbeddingsByFavScorePathPrefix: String =
"/producer_top_k_simcluster_embeddings_by_fav_score_"
val clusterTopKProducersByFavScorePathPrefix: String =
"/simcluster_embedding_top_k_producers_by_fav_score_"
val minNumFavers: Int = minNumFaversForProducer
def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
]
def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
]
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
override def runOnDateRange(
args: Args
)(
implicit dateRange: DateRange,
timeZone: TimeZone,
uniqueID: UniqueID
): Execution[Unit] = {
val producerTopKEmbeddingsByFavScorePathUpdated: String =
rootPath + producerTopKEmbeddingsByFavScorePathPrefix + ModelVersions
.toKnownForModelVersion(modelVersion)
val clusterTopKProducersByFavScorePathUpdated: String =
rootPath + clusterTopKProducersByFavScorePathPrefix + ModelVersions
.toKnownForModelVersion(modelVersion)
val producerClusterEmbeddingByFavScore = getProducerClusterEmbedding(
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
DataSources.userUserNormalizedGraphSource,
DataSources.userNormsAndCounts,
userToProducerFavScore,
userToClusterFavScore, // Fav score
_.faverCount.exists(_ > minNumFavers),
numReducersForMatrixMultiplication,
modelVersion,
cosineSimilarityThreshold
).forceToDisk
writeOutput(
producerClusterEmbeddingByFavScore,
producerTopKSimclusterEmbeddingsByFavScoreDataset,
simclusterEmbeddingTopKProducersByFavScoreDataset,
producerTopKEmbeddingsByFavScorePathUpdated,
clusterTopKProducersByFavScorePathUpdated,
modelVersion
)
}
}
/**
* Base class for Follow based producer embeddings. Helps reuse the code for different model versions
*/
trait ProducerEmbeddingsFromInterestedInByFollowScoreBase extends ScheduledExecutionApp {
import ProducerEmbeddingsFromInterestedIn._
import ProducerEmbeddingsFromInterestedInBatchAppUtil._
def modelVersion: ModelVersion
val producerTopKEmbeddingsByFollowScorePathPrefix: String =
"/producer_top_k_simcluster_embeddings_by_follow_score_"
val clusterTopKProducersByFollowScorePathPrefix: String =
"/simcluster_embedding_top_k_producers_by_follow_score_"
def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
]
def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
]
def getInterestedInFn: (DateRange, TimeZone) => TypedPipe[(Long, ClustersUserIsInterestedIn)]
val minNumFollowers: Int = minNumFollowersForProducer
override def runOnDateRange(
args: Args
)(
implicit dateRange: DateRange,
timeZone: TimeZone,
uniqueID: UniqueID
): Execution[Unit] = {
val producerTopKEmbeddingsByFollowScorePath: String =
rootPath + producerTopKEmbeddingsByFollowScorePathPrefix + ModelVersions
.toKnownForModelVersion(modelVersion)
val clusterTopKProducersByFollowScorePath: String =
rootPath + clusterTopKProducersByFollowScorePathPrefix + ModelVersions
.toKnownForModelVersion(modelVersion)
val producerClusterEmbeddingByFollowScore = getProducerClusterEmbedding(
getInterestedInFn(dateRange.embiggen(Days(5)), timeZone),
DataSources.userUserNormalizedGraphSource,
DataSources.userNormsAndCounts,
userToProducerFollowScore,
userToClusterFollowScore, // Follow score
_.followerCount.exists(_ > minNumFollowers),
numReducersForMatrixMultiplication,
modelVersion,
cosineSimilarityThreshold
).forceToDisk
writeOutput(
producerClusterEmbeddingByFollowScore,
producerTopKSimclusterEmbeddingsByFollowScoreDataset,
simclusterEmbeddingTopKProducersByFollowScoreDataset,
producerTopKEmbeddingsByFollowScorePath,
clusterTopKProducersByFollowScorePath,
modelVersion
)
}
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_fav_score \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFavScoreBatchApp
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedInUpdatedSource
override val firstTime: RichDate = RichDate("2019-09-10")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFavScoreUpdatedScalaDataset
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFavScoreUpdatedScalaDataset
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_fav_score_2020 \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFavScore2020BatchApp
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedIn2020Source
override val firstTime: RichDate = RichDate("2021-03-01")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFavScore2020ScalaDataset
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFavScore2020ScalaDataset
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_fav_score_dec11 \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFavScoreDec11BatchApp
extends ProducerEmbeddingsFromInterestedInByFavScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedInDec11Source
override val firstTime: RichDate = RichDate("2019-11-18")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFavScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFavScoreScalaDataset
override def simclusterEmbeddingTopKProducersByFavScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFavScoreScalaDataset
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_follow_score \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFollowScoreBatchApp
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145kUpdated
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedInUpdatedSource
override val firstTime: RichDate = RichDate("2019-09-10")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFollowScoreUpdatedScalaDataset
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFollowScoreUpdatedScalaDataset
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_follow_score_2020 \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFollowScore2020BatchApp
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145k2020
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedIn2020Source
override val firstTime: RichDate = RichDate("2021-03-01")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFollowScore2020ScalaDataset
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFollowScore2020ScalaDataset
}
/**
capesospy-v2 update --build_locally --start_cron \
--start_cron producer_embeddings_from_interested_in_by_follow_score_dec11 \
src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object ProducerEmbeddingsFromInterestedInByFollowScoreDec11BatchApp
extends ProducerEmbeddingsFromInterestedInByFollowScoreBase {
override def modelVersion: ModelVersion = ModelVersion.Model20m145kDec11
override def getInterestedInFn: (
DateRange,
TimeZone
) => TypedPipe[(UserId, ClustersUserIsInterestedIn)] =
InterestedInSources.simClustersInterestedInDec11Source
override val firstTime: RichDate = RichDate("2019-11-18")
override val batchIncrement: Duration = Days(7)
override def producerTopKSimclusterEmbeddingsByFollowScoreDataset: KeyValDALDataset[
KeyVal[Long, TopSimClustersWithScore]
] =
ProducerTopKSimclusterEmbeddingsByFollowScoreScalaDataset
override def simclusterEmbeddingTopKProducersByFollowScoreDataset: KeyValDALDataset[
KeyVal[PersistedFullClusterId, TopProducersWithScore]
] =
SimclusterEmbeddingTopKProducersByFollowScoreScalaDataset
}
/**
* Adhoc job to calculate producer's simcluster embeddings, which essentially assigns interestedIn
* SimClusters to each producer, regardless of whether the producer has a knownFor assignment.
*
$ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc
$ scalding remote run \
--main-class com.twitter.simclusters_v2.scalding.embedding.ProducerEmbeddingsFromInterestedInAdhocApp \
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:producer_embeddings_from_interested_in-adhoc \
--user cassowary --cluster bluebird-qus1 \
--keytab /var/lib/tss/keys/fluffy/keytabs/client/cassowary.keytab \
--principal service_acoount@TWITTER.BIZ \
-- --date 2020-08-25 --model_version 20M_145K_updated \
--outputDir /gcs/user/cassowary/adhoc/producerEmbeddings/
*/
object ProducerEmbeddingsFromInterestedInAdhocApp extends AdhocExecutionApp {
import ProducerEmbeddingsFromInterestedIn._
private val numReducersForMatrixMultiplication = 12000
/**
* Calculate the embedding and writes the results keyed by producers and clusters separately into
* individual locations
*/
private def runAdhocByScore(
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
userUserNormalGraph: TypedPipe[UserAndNeighbors],
userNormsAndCounts: TypedPipe[NormsAndCounts],
keyedByProducerSinkPath: String,
keyedByClusterSinkPath: String,
userToProducerScoringFn: NeighborWithWeights => Double,
userToClusterScoringFn: UserToInterestedInClusterScores => Double,
userFilter: NormsAndCounts => Boolean,
modelVersion: ModelVersion
)(
implicit uniqueID: UniqueID
): Execution[Unit] = {
val producerClusterEmbedding = getProducerClusterEmbedding(
interestedInClusters,
userUserNormalGraph,
userNormsAndCounts,
userToProducerScoringFn,
userToClusterScoringFn,
userFilter,
numReducersForMatrixMultiplication,
modelVersion,
cosineSimilarityThreshold
).forceToDisk
val keyByProducerExec =
toSimClusterEmbedding(producerClusterEmbedding, topKClustersToKeep, modelVersion)
.writeExecution(
AdhocKeyValSources.topProducerToClusterEmbeddingsSource(keyedByProducerSinkPath))
val keyByClusterExec =
fromSimClusterEmbedding(producerClusterEmbedding, topKUsersToKeep, modelVersion)
.map { case (clusterId, topProducers) => (clusterId, topProducersToThrift(topProducers)) }
.writeExecution(
AdhocKeyValSources.topClusterEmbeddingsToProducerSource(keyedByClusterSinkPath))
Execution.zip(keyByProducerExec, keyByClusterExec).unit
}
// Calculate the embeddings using follow scores
private def runFollowScore(
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
userUserNormalGraph: TypedPipe[UserAndNeighbors],
userNormsAndCounts: TypedPipe[NormsAndCounts],
modelVersion: ModelVersion,
outputDir: String
)(
implicit uniqueID: UniqueID
): Execution[Unit] = {
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFollowScore_" + modelVersion
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFollowScore_" + modelVersion
runAdhocByScore(
interestedInClusters,
userUserNormalGraph,
userNormsAndCounts,
keyedByProducerSinkPath = keyByProducerSinkPath,
keyedByClusterSinkPath = keyByClusterSinkPath,
userToProducerScoringFn = userToProducerFollowScore,
userToClusterScoringFn = userToClusterFollowScore,
_.followerCount.exists(_ > minNumFollowersForProducer),
modelVersion
)
}
// Calculate the embeddings using fav scores
private def runFavScore(
interestedInClusters: TypedPipe[(Long, ClustersUserIsInterestedIn)],
userUserNormalGraph: TypedPipe[UserAndNeighbors],
userNormsAndCounts: TypedPipe[NormsAndCounts],
modelVersion: ModelVersion,
outputDir: String
)(
implicit uniqueID: UniqueID
): Execution[Unit] = {
val keyByClusterSinkPath = outputDir + "keyedByCluster/byFavScore_" + modelVersion
val keyByProducerSinkPath = outputDir + "keyedByProducer/byFavScore_" + modelVersion
runAdhocByScore(
interestedInClusters,
userUserNormalGraph,
userNormsAndCounts,
keyedByProducerSinkPath = keyByProducerSinkPath,
keyedByClusterSinkPath = keyByClusterSinkPath,
userToProducerScoringFn = userToProducerFavScore,
userToClusterScoringFn = userToClusterFavScore,
_.faverCount.exists(_ > minNumFaversForProducer),
modelVersion
)
}
override def runOnDateRange(
args: Args
)(
implicit dateRange: DateRange,
timeZone: TimeZone,
uniqueID: UniqueID
): Execution[Unit] = {
val outputDir = args("outputDir")
val modelVersion =
ModelVersions.toModelVersion(args.required("model_version"))
val interestedInClusters = modelVersion match {
case ModelVersion.Model20m145k2020 =>
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone).forceToDisk
case ModelVersion.Model20m145kUpdated =>
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone).forceToDisk
case _ =>
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone).forceToDisk
}
Execution
.zip(
runFavScore(
interestedInClusters,
DataSources.userUserNormalizedGraphSource,
DataSources.userNormsAndCounts,
modelVersion,
outputDir
),
runFollowScore(
interestedInClusters,
DataSources.userUserNormalizedGraphSource,
DataSources.userNormsAndCounts,
modelVersion,
outputDir
)
).unit
}
}
/**
* Computes the producer's interestedIn cluster embedding. i.e. If a tweet author (producer) is not
* associated with a KnownFor cluster, do a cross-product between
* [user, interestedIn] and [user, producer] to find the similarity matrix [interestedIn, producer].
*/
object ProducerEmbeddingsFromInterestedIn {
val minNumFollowersForProducer: Int = 100
val minNumFaversForProducer: Int = 100
val topKUsersToKeep: Int = 300
val topKClustersToKeep: Int = 60
val cosineSimilarityThreshold: Double = 0.01
type ClusterId = Int
def topProducersToThrift(producersWithScore: Seq[(UserId, Double)]): TopProducersWithScore = {
val thrift = producersWithScore.map { producer =>
TopProducerWithScore(producer._1, producer._2)
}
TopProducersWithScore(thrift)
}
def userToProducerFavScore(neighbor: NeighborWithWeights): Double = {
neighbor.favScoreHalfLife100DaysNormalizedByNeighborFaversL2.getOrElse(0.0)
}
def userToProducerFollowScore(neighbor: NeighborWithWeights): Double = {
neighbor.followScoreNormalizedByNeighborFollowersL2.getOrElse(0.0)
}
def userToClusterFavScore(clusterScore: UserToInterestedInClusterScores): Double = {
clusterScore.favScoreClusterNormalizedOnly.getOrElse(0.0)
}
def userToClusterFollowScore(clusterScore: UserToInterestedInClusterScores): Double = {
clusterScore.followScoreClusterNormalizedOnly.getOrElse(0.0)
}
def getUserSimClustersMatrix(
simClustersSource: TypedPipe[(UserId, ClustersUserIsInterestedIn)],
extractScore: UserToInterestedInClusterScores => Double,
modelVersion: ModelVersion
): TypedPipe[(UserId, Seq[(Int, Double)])] = {
simClustersSource.collect {
case (userId, clusters)
if ModelVersions.toModelVersion(clusters.knownForModelVersion).equals(modelVersion) =>
userId -> clusters.clusterIdToScores
.map {
case (clusterId, clusterScores) =>
(clusterId, extractScore(clusterScores))
}.toSeq.filter(_._2 > 0)
}
}
/**
* Given a weighted user-producer engagement history matrix, as well as a
* weighted user-interestedInCluster matrix, do the matrix multiplication to yield a weighted
* producer-cluster embedding matrix
*/
def getProducerClusterEmbedding(
interestedInClusters: TypedPipe[(UserId, ClustersUserIsInterestedIn)],
userProducerEngagementGraph: TypedPipe[UserAndNeighbors],
userNormsAndCounts: TypedPipe[NormsAndCounts],
userToProducerScoringFn: NeighborWithWeights => Double,
userToClusterScoringFn: UserToInterestedInClusterScores => Double,
userFilter: NormsAndCounts => Boolean, // function to decide whether to compute embeddings for the user or not
numReducersForMatrixMultiplication: Int,
modelVersion: ModelVersion,
threshold: Double
)(
implicit uid: UniqueID
): TypedPipe[((ClusterId, UserId), Double)] = {
val userSimClustersMatrix = getUserSimClustersMatrix(
interestedInClusters,
userToClusterScoringFn,
modelVersion
)
val userUserNormalizedGraph = getFilteredUserUserNormalizedGraph(
userProducerEngagementGraph,
userNormsAndCounts,
userToProducerScoringFn,
userFilter
)
SimClustersEmbeddingJob
.legacyMultiplyMatrices(
userUserNormalizedGraph,
userSimClustersMatrix,
numReducersForMatrixMultiplication
)
.filter(_._2 >= threshold)
}
def getFilteredUserUserNormalizedGraph(
userProducerEngagementGraph: TypedPipe[UserAndNeighbors],
userNormsAndCounts: TypedPipe[NormsAndCounts],
userToProducerScoringFn: NeighborWithWeights => Double,
userFilter: NormsAndCounts => Boolean
)(
implicit uid: UniqueID
): TypedPipe[(UserId, (UserId, Double))] = {
val numUsersCount = Stat("num_users_with_engagements")
val userUserFilteredEdgeCount = Stat("num_filtered_user_user_engagements")
val validUsersCount = Stat("num_valid_users")
val validUsers = userNormsAndCounts.collect {
case user if userFilter(user) =>
validUsersCount.inc()
user.userId
}
userProducerEngagementGraph
.flatMap { userAndNeighbors =>
numUsersCount.inc()
userAndNeighbors.neighbors
.map { neighbor =>
userUserFilteredEdgeCount.inc()
(neighbor.neighborId, (userAndNeighbors.userId, userToProducerScoringFn(neighbor)))
}
.filter(_._2._2 > 0.0)
}
.join(validUsers.asKeys)
.map {
case (neighborId, ((userId, score), _)) =>
(userId, (neighborId, score))
}
}
def fromSimClusterEmbedding[T, E](
resultMatrix: TypedPipe[((ClusterId, T), Double)],
topK: Int,
modelVersion: ModelVersion
): TypedPipe[(PersistedFullClusterId, Seq[(T, Double)])] = {
resultMatrix
.map {
case ((clusterId, inputId), score) => (clusterId, (inputId, score))
}
.group
.sortedReverseTake(topK)(Ordering.by(_._2))
.map {
case (clusterId, topEntitiesWithScore) =>
PersistedFullClusterId(modelVersion, clusterId) -> topEntitiesWithScore
}
}
def toSimClusterEmbedding[T](
resultMatrix: TypedPipe[((ClusterId, T), Double)],
topK: Int,
modelVersion: ModelVersion
)(
implicit ordering: Ordering[T]
): TypedPipe[(T, TopSimClustersWithScore)] = {
resultMatrix
.map {
case ((clusterId, inputId), score) => (inputId, (clusterId, score))
}
.group
//.withReducers(3000) // uncomment for producer-simclusters job
.sortedReverseTake(topK)(Ordering.by(_._2))
.map {
case (inputId, topSimClustersWithScore) =>
val topSimClusters = topSimClustersWithScore.map {
case (clusterId, score) => SimClusterWithScore(clusterId, score)
}
inputId -> TopSimClustersWithScore(topSimClusters, modelVersion)
}
}
}