-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_pretrain_all.py
27 lines (25 loc) · 1.06 KB
/
run_pretrain_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
max_lens = [128, 256]
augment_ops = ['drop_col', 'sample_row', 'sample_row_ordered', 'shuffle_col', 'drop_cell', 'drop_num_col', 'drop_nan_col', 'shuffle_row']
sampling_methods = ['head', 'random', 'constant', 'frequent', 'tfidf_token', 'tfidf_entity']
for ml in max_lens:
for ao in [augment_ops[4]]:
for sm in sampling_methods:
for run_id in range(5):
# add --single_column for baseline
cmd = """python run_pretrain.py \
--task %s \
--batch_size 64 \
--lr 5e-5 \
--lm roberta \
--n_epochs 3 \
--max_len %d \
--size 10000 \
--save_model \
--single_column \
--augment_op %s \
--fp16 \
--sample_meth %s \
--run_id %d""" % ("small", ml, ao, sm, run_id)
print(cmd)
os.system('sbatch -c 1 -G 1 -J my-exp --tasks-per-node=1 --output=slurm.out --wrap="%s"' % cmd)