Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multi-gpu training error: some model parameters don't calculate grad when training? #15

Open
YongtaoGe opened this issue Jun 25, 2022 · 2 comments

Comments

@YongtaoGe
Copy link

backbone.bottom_up.stem.conv1.weight
backbone.bottom_up.res2.0.shortcut.weight
backbone.bottom_up.res2.0.conv1.weight
backbone.bottom_up.res2.0.conv2.weight
backbone.bottom_up.res2.0.conv3.weight
backbone.bottom_up.res2.1.conv1.weight
backbone.bottom_up.res2.1.conv2.weight
backbone.bottom_up.res2.1.conv3.weight
backbone.bottom_up.res2.2.conv1.weight
backbone.bottom_up.res2.2.conv2.weight
backbone.bottom_up.res2.2.conv3.weight
head.head_series.5.self_attn.in_proj_weight
head.head_series.5.self_attn.in_proj_bias
head.head_series.5.self_attn.out_proj.weight
head.head_series.5.self_attn.out_proj.bias
head.head_series.5.inst_interact.dynamic_layer.weight
head.head_series.5.inst_interact.dynamic_layer.bias
head.head_series.5.inst_interact.norm1.weight
head.head_series.5.inst_interact.norm1.bias
head.head_series.5.inst_interact.norm2.weight
head.head_series.5.inst_interact.norm2.bias
head.head_series.5.inst_interact.out_layer.weight
head.head_series.5.inst_interact.out_layer.bias
head.head_series.5.inst_interact.norm3.weight
head.head_series.5.inst_interact.norm3.bias
head.head_series.5.linear1.weight
head.head_series.5.linear1.bias
head.head_series.5.linear2.weight
head.head_series.5.linear2.bias
head.head_series.5.norm1.weight
head.head_series.5.norm1.bias
head.head_series.5.norm2.weight
head.head_series.5.norm2.bias
head.head_series.5.norm3.weight
head.head_series.5.norm3.bias
head.head_series.5.cls_module.0.weight
head.head_series.5.cls_module.1.weight
head.head_series.5.cls_module.1.bias
head.head_series.5.reg_module.0.weight
head.head_series.5.reg_module.1.weight
head.head_series.5.reg_module.1.bias
head.head_series.5.reg_module.3.weight
head.head_series.5.reg_module.4.weight
head.head_series.5.reg_module.4.bias
head.head_series.5.reg_module.6.weight
head.head_series.5.reg_module.7.weight
head.head_series.5.reg_module.7.bias
head.head_series.5.class_logits.weight
head.head_series.5.class_logits.bias
head.head_series.5.bboxes_delta.weight
head.head_series.5.bboxes_delta.bias
head.iter_series.0.reg_module.0.weight
head.iter_series.0.reg_module.1.weight
head.iter_series.0.reg_module.1.bias
head.iter_series.0.reg_module.3.weight
head.iter_series.0.reg_module.4.weight
head.iter_series.0.reg_module.4.bias
head.iter_series.0.reg_module.6.weight
head.iter_series.0.reg_module.7.weight
head.iter_series.0.reg_module.7.bias
head.iter_series.0.bboxes_delta.weight
head.iter_series.0.bboxes_delta.bias
@YongtaoGe YongtaoGe changed the title some model parameters don't calculate grad when training? multi-gpu training error: some model parameters don't calculate grad when training? Jun 25, 2022
@WANGCHAO1996
Copy link

你好 怎么解决这个问题的 我用两张卡训练出现这个问题:
RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by (1) passing the keyword argument find_unused_parameters=True to torch.nn.parallel.DistributedDataParallel; (2) making sure all forward function outputs participate in calculating loss. If you already have done the above two steps, then the distributed data parallel module wasn't able to locate the output tensors in the return value of your module's forward function. Please include the loss function and the structure of the return value of forward of your module when reporting this issue (e.g. list, dict, iterable).

@yexiguafuqihao
Copy link
Collaborator

yexiguafuqihao commented Jun 1, 2023

Please refer to this to solve the problem.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants