-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification_module.py
270 lines (237 loc) · 10.6 KB
/
classification_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from typing import Any
import matplotlib.pyplot as plt
import pytorch_lightning as pl
import numpy as np
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision import models
import torch.nn.functional as F
from sklearn.metrics import accuracy_score, roc_auc_score
class ClassificationModule(pl.LightningModule):
"""
A generic PL module for classification
"""
def __init__(
self,
num_classes: int,
encoder_name: str,
train_transform_module: torch.nn.Module,
val_transform_module: torch.nn.Module,
lr: float = 1e-4,
patience_scheduler: int = 10,
metric_to_monitor: str = "Val/AUROC",
metric_to_monitor_mode: str = "max",
weight_decay: float = 0.0,
**kwargs,
) -> None:
super().__init__()
self.encoder_name = encoder_name
self.num_classes = num_classes
self.lr = lr
self.weight_decay = weight_decay
self.patience_scheduler = patience_scheduler
self.metric_to_monitor = metric_to_monitor
self.metric_to_monitor_mode = metric_to_monitor_mode
self.model = self.get_model()
self.train_transform_module = train_transform_module
# this is saving it to the model for inference time
# it also ensure that you validate with the right transforms.
self.model.preprocess = val_transform_module
self.criterion = torch.nn.CrossEntropyLoss()
self.save_hyperparameters()
def on_after_batch_transfer(self, batch, dataloader_idx):
if isinstance(batch, dict):
x, y = batch["image"], batch["target"]
else:
x, y = batch[0], batch[1]
if self.trainer.training:
x = self.train_transform_module(x) # to perform GPU batched data augmentation
else:
x = self.model.preprocess(x)
return x, y
def common_step(self, batch: Any, batch_idx: int) -> Any: # type: ignore
data, target = batch
output = self.model(data)
loss = self.criterion(output, target)
probas = torch.softmax(output, 1)
return loss, probas, target
def training_step(self, batch: Any, batch_idx: int) -> Any: # type: ignore
loss, probas, targets = self.common_step(batch, batch_idx)
self.log("Train/loss", loss, on_epoch=True, on_step=True)
self.train_probas.append(probas.detach().cpu())
self.train_targets.append(targets.detach().cpu())
if batch_idx == 0:
data = batch[0]
data = data.cpu().numpy()
f, ax = plt.subplots(2, 5, figsize=(15, 5))
ax = ax.ravel()
for i in range(min(10, data.shape[0])):
img = np.transpose(data[i], [1, 2, 0])
img = (img - img.min()) / (img.max() - img.min())
ax[i].imshow(img)
ax[i].axis("off")
self.logger.experiment.add_figure("train/inputs", f, global_step=self.current_epoch)
if torch.isnan(loss):
raise ValueError("Found loss Nan")
return loss
def on_train_epoch_start(self) -> None:
self.train_probas = []
self.train_targets = []
def on_train_epoch_end(self, unused=None) -> None:
targets, probas = torch.cat(self.train_targets), torch.cat(self.train_probas)
preds = torch.argmax(probas, 1)
try:
if self.num_classes == 2:
self.log("Train/AUROC", roc_auc_score(targets, probas[:, 1]))
else:
self.log("Train/AUROC", roc_auc_score(targets, probas, average="macro", multi_class="ovr"))
except ValueError:
pass
self.log("Train/Accuracy", accuracy_score(targets, preds))
self.train_probas = []
self.train_targets = []
def on_validation_epoch_start(self) -> None:
self.validation_probas = []
self.validation_targets = []
def on_validation_epoch_end(self, unused=None) -> None:
targets, probas = torch.cat(self.validation_targets).int(), torch.cat(self.validation_probas)
preds = torch.argmax(probas, 1)
try:
if self.num_classes == 2:
self.log("Val/AUROC", roc_auc_score(targets, probas[:, 1]))
else:
self.log("Val/AUROC", roc_auc_score(targets, probas, average="macro", multi_class="ovr"))
# For iWilds you may not have all the classes in the dataset so you can not compute ROC
except ValueError:
pass
self.log("Val/Accuracy", accuracy_score(targets, preds))
self.validation_probas = []
self.validation_targets = []
def validation_step(self, batch, batch_idx: int) -> None: # type: ignore
loss, probas, targets = self.common_step(batch, batch_idx)
self.log("Val/loss", loss, on_epoch=True, on_step=False)
self.validation_probas.append(probas.detach().cpu())
self.validation_targets.append(targets.detach().cpu())
if batch_idx == 0:
preds = torch.argmax(probas, 1)
data = batch[0]
wrong_x, wrong_y = (
data[targets != preds].cpu().numpy(),
targets[targets != preds].cpu().numpy(),
)
f, ax = plt.subplots(2, 5, figsize=(15, 5))
ax = ax.ravel()
for i in range(min(10, wrong_x.shape[0])):
img = np.transpose(wrong_x[i], [1, 2, 0])
img = (img - img.min()) / (img.max() - img.min())
ax[i].imshow(img)
ax[i].set_title(wrong_y[i])
ax[i].axis("off")
self.logger.experiment.add_figure("val/failed", f, global_step=self.current_epoch)
def configure_optimizers(self):
params_to_update = []
for param in self.model.parameters():
if param.requires_grad:
params_to_update.append(param)
optimizer = [torch.optim.Adam(params_to_update, lr=self.lr, weight_decay=self.weight_decay)]
scheduler = {
"scheduler": ReduceLROnPlateau(
optimizer[0], patience=self.patience_scheduler, mode=self.metric_to_monitor_mode, min_lr=1e-5
),
"monitor": self.metric_to_monitor,
}
return optimizer, scheduler
def get_model(self) -> torch.nn.Module:
if self.encoder_name.startswith("resnet"):
return ResNetBase(num_classes=self.num_classes, encoder_name=self.encoder_name)
elif self.encoder_name.startswith("efficientnet"):
return EfficientNetBase(num_classes=self.num_classes, encoder_name=self.encoder_name)
elif self.encoder_name.startswith("densenet"):
return DenseNet121(num_classes=self.num_classes, encoder_name=self.encoder_name)
else:
raise NotImplementedError
class ResNetBase(torch.nn.Module):
def __init__(self, num_classes: int, encoder_name: str) -> None:
super().__init__()
match encoder_name:
case "resnet50_pretrained":
self.net = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
case "resnet18_pretrained":
self.net = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
case "resnet18":
self.net = models.resnet18(weights=None)
case "resnet50":
self.net = models.resnet50(weights=None)
case _:
raise ValueError(f"Encoder name {encoder_name} not recognised.")
self.num_features = self.net.fc.in_features
self.net.fc = torch.nn.Linear(self.num_features, num_classes)
self.num_classes = num_classes
def get_features(self, x: torch.Tensor) -> torch.Tensor:
x = self.net.conv1(x)
x = self.net.bn1(x)
x = self.net.relu(x)
x = self.net.maxpool(x)
x = self.net.layer1(x)
x = self.net.layer2(x)
x = self.net.layer3(x)
x = self.net.layer4(x)
x = self.net.avgpool(x)
x = torch.flatten(x, 1)
return x
def classify_features(self, x: torch.Tensor) -> torch.Tensor:
return self.net.fc(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
feats = self.get_features(x)
return self.classify_features(feats)
class EfficientNetBase(torch.nn.Module):
def __init__(self, num_classes: int, encoder_name: str) -> None:
super().__init__()
match encoder_name:
case "efficientnet_v2_s_pretrained":
self.net = models.efficientnet_v2_s(weights=models.EfficientNet_V2_S_Weights.DEFAULT)
self.net.classifier = models.efficientnet_v2_s(weights=None, num_classes=num_classes).classifier
case "efficientnet_v2_s":
self.net = models.efficientnet_v2_s(weights=None, num_classes=num_classes)
case "efficientnet_v2_l_pretrained":
self.net = models.efficientnet_v2_l(weights=models.EfficientNet_V2_L_Weights.DEFAULT)
self.net.classifier = models.efficientnet_v2_l(weights=None, num_classes=num_classes).classifier
case "efficientnet_v2_l":
self.net = models.efficientnet_v2_l(weights=None, num_classes=num_classes)
case _:
raise ValueError(f"Encoder name {encoder_name} not recognised.")
self.num_classes = num_classes
def get_features(self, x):
x = self.net.features(x)
x = self.net.avgpool(x)
x = torch.flatten(x, 1)
return x
def classify_features(self, x):
return self.net.classifier(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
feats = self.get_features(x)
return self.classify_features(feats)
class DenseNet121(torch.nn.Module):
def __init__(self, num_classes: int, encoder_name: str) -> None:
super().__init__()
match encoder_name:
case "densenet121_pretrained":
self.net = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT)
case "densenet121":
self.net = models.densenet121(None)
case _:
raise ValueError(f"Encoder name {encoder_name} not recognised.")
self.num_features = self.net.classifier.in_features
self.net.classifier = torch.nn.Linear(self.num_features, num_classes)
self.num_classes = num_classes
def get_features(self, x):
features = self.net.features(x)
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = torch.flatten(out, 1)
return out
def classify_features(self, x):
return self.net.classifier(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
feats = self.get_features(x)
return self.classify_features(feats)