-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMyfunctions.py
99 lines (78 loc) · 3.36 KB
/
Myfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
import numpy as np
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
# Loading the Model
model = load_model('mask_detector.h5')
# Loading the classifier from the file.
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# accepted image file extension
UPLOAD_FOLDER = 'static/'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# initiating the video capturing
camera = cv2.VideoCapture(0)
def allowed_file(filename):
""" Checks the file format when file is uploaded"""
return ('.' in filename and
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS)
def gen_frames():
while True:
success, frame = camera.read() # read the camera frame
if not success:
break
else:
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
def image_preprocessing(frame):
path = "static/" + str(frame)
frame = cv2.imread(path)
faces_detected = face_cascade.detectMultiScale(frame, 1.2, 7, minSize=(60, 60), flags=cv2.CASCADE_SCALE_IMAGE)
if len(faces_detected) == 0:
print("face not detected")
else:
faces_images = []
for (x, y, w, h) in faces_detected:
cropped_faces = frame[y:y + h, x:x + w]
cropped_faces = cv2.cvtColor(cropped_faces, cv2.COLOR_BGR2RGB)
cropped_faces = cv2.resize(cropped_faces, (224, 224))
cropped_faces = img_to_array(cropped_faces)
faces_images.append(cropped_faces)
faces_images = np.array(faces_images)
faces = preprocess_input(faces_images)
predictions = model.predict(faces)
return predictions, frame, faces_detected
def predictions_results(predictions, frame, faces_detected, filename):
correct_mask_count = []
incorrect_mask_count = []
no_mask_count = []
i = 0
for pred in predictions:
(WithoutMask, CorrectMask, InCorrectMask) = pred
if max(pred) == CorrectMask:
label = " Correct Mask"
color = (0, 255, 0)
correct_mask_count.append(1)
elif max(pred) == InCorrectMask:
label = " Incorrect Mask"
color = (250, 00, 0)
incorrect_mask_count.append(2)
else:
label = " No Mask"
color = (0, 0, 255)
no_mask_count.append(0)
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(WithoutMask, CorrectMask, InCorrectMask) * 100)
(x, y, w, h) = faces_detected[i]
# Displaying the labels
cv2.rectangle(frame, (x, y + 20), (x + 5 + w, y + h + 15), color, 2)
cv2.putText(frame, label, (x, y + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
i += 1
cv2.imwrite(f"static\{filename}", frame)
face_count = len(no_mask_count) + len(incorrect_mask_count) + len(correct_mask_count)
no_masks = len(no_mask_count)
corrects_masks = len(correct_mask_count)
incorrects_masks = len(incorrect_mask_count)
return face_count, no_masks, corrects_masks, incorrects_masks