-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
388 lines (361 loc) · 17.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys
import arrow
import branca
import folium
import geopandas
import pandas as pd
import numpy as np
import seaborn as sns
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from tqdm import tqdm
from matplotlib import animation
from matplotlib.backends.backend_pdf import PdfPages
from mpl_toolkits.axes_grid1 import make_axes_locatable
from shapely.geometry import Polygon
def lebesgue_measure(S):
"""
A helper function for calculating the Lebesgue measure for a space.
It actually is the length of an one-dimensional space, and the area of
a two-dimensional space.
"""
sub_lebesgue_ms = [ sub_space[1] - sub_space[0] for sub_space in S ]
return np.prod(sub_lebesgue_ms)
def l2_norm(x, y):
"""
This helper function calculates distance (l2 norm) between two arbitrary data points from tensor x and
tensor y respectively, where x and y have the same shape [length, data_dim].
"""
x = tf.cast(x, dtype=tf.float32)
y = tf.cast(y, dtype=tf.float32)
x_sqr = tf.expand_dims(tf.reduce_sum(x * x, 1), -1) # [length, 1]
y_sqr = tf.expand_dims(tf.reduce_sum(y * y, 1), -1) # [length, 1]
xy = tf.matmul(x, tf.transpose(y)) # [length, length]
dist_mat = x_sqr + tf.transpose(y_sqr) - 2 * xy
return dist_mat
def plot_spatial_kernel(path, kernel, S, grid_size,
sigma_x_clim=None, sigma_y_clim=None, rho_clim=None):
"""
Plot spatial kernel parameters over the spatial region, including
sigma_x, sigma_x, and rho.
"""
assert len(S) == 2, '%d is an invalid dimension of the space.' % len(S)
# define the span for space region
x_span = np.linspace(S[0][0], S[0][1], grid_size+1)[:-1]
y_span = np.linspace(S[1][0], S[1][1], grid_size+1)[:-1]
# map initialization
sigma_x_map = np.zeros((grid_size, grid_size))
sigma_y_map = np.zeros((grid_size, grid_size))
rho_map = np.zeros((grid_size, grid_size))
# grid entris calculation
s = np.array([ [x_span[x_idx], y_span[y_idx]]
for x_idx in range(grid_size) for y_idx in range(grid_size) ])
mu_xs, mu_ys, sigma_xs, sigma_ys, rhos = kernel.nonlinear_mapping(s)
# mu_xs, mu_ys, sigma_xs, sigma_ys, rhos = \
# kernel.mu_x(s[:,0], s[:,1]),\
# kernel.mu_y(s[:,0], s[:,1]),\
# kernel.sigma_x(s[:,0], s[:,1]),\
# kernel.sigma_y(s[:,0], s[:,1]),\
# kernel.rho(s[:,0], s[:,1])
indices = [ [x_idx, y_idx]
for x_idx in range(grid_size) for y_idx in range(grid_size) ]
for i in range(len(indices)):
sigma_x_map[indices[i][0]][indices[i][1]] = sigma_xs[i]
sigma_y_map[indices[i][0]][indices[i][1]] = sigma_ys[i]
rho_map[indices[i][0]][indices[i][1]] = rhos[i]
# plotting
plt.rc('text', usetex=True)
plt.rc("font", family="serif")
# plot as a pdf file
# with PdfPages(path) as pdf:
fig, axs = plt.subplots(1, 3)
cmap = matplotlib.cm.get_cmap('viridis')
im_0 = axs[0].imshow(sigma_x_map, interpolation='nearest', origin='lower', cmap=cmap)
im_1 = axs[1].imshow(sigma_y_map, interpolation='nearest', origin='lower', cmap=cmap)
im_2 = axs[2].imshow(rho_map, interpolation='nearest', origin='lower', cmap=cmap)
sigma_x_clim = [sigma_x_map.min(), sigma_x_map.max()] if sigma_x_clim is None else sigma_x_clim
sigma_y_clim = [sigma_y_map.min(), sigma_y_map.max()] if sigma_y_clim is None else sigma_y_clim
rho_clim = [rho_map.min(), rho_map.max()] if rho_clim is None else rho_clim
print(sigma_x_map.min(), sigma_x_map.max())
print(sigma_y_map.min(), sigma_y_map.max())
print(rho_map.min(), rho_map.max())
# ticks for colorbars
im_0.set_clim(*sigma_x_clim)
im_1.set_clim(*sigma_y_clim)
im_2.set_clim(*rho_clim)
tick_0 = np.linspace(sigma_x_clim[0], sigma_x_clim[1], 5).tolist()
tick_1 = np.linspace(sigma_y_clim[0], sigma_y_clim[1], 5).tolist()
tick_2 = np.linspace(rho_clim[0], rho_clim[1], 5).tolist()
# set x, y labels for subplots
axs[0].set_xlabel(r'$x$', fontsize=10)
axs[1].set_xlabel(r'$x$', fontsize=10)
axs[2].set_xlabel(r'$x$', fontsize=10)
axs[0].set_ylabel(r'$y$', fontsize=10)
axs[1].set_ylabel(r'$y$', fontsize=10)
axs[2].set_ylabel(r'$y$', fontsize=10)
# remove x, y ticks
axs[0].get_xaxis().set_ticks([])
axs[1].get_xaxis().set_ticks([])
axs[2].get_xaxis().set_ticks([])
axs[0].get_yaxis().set_ticks([])
axs[1].get_yaxis().set_ticks([])
axs[2].get_yaxis().set_ticks([])
# set subtitle for subplots
axs[0].set_title(r'$\sigma_x$', fontsize=12)
axs[1].set_title(r'$\sigma_y$', fontsize=12)
axs[2].set_title(r'$\rho$', fontsize=12)
# plot colorbar
cbar_0 = fig.colorbar(im_0, ax=axs[0], ticks=tick_0, fraction=0.046, pad=0.08, orientation="horizontal")
cbar_1 = fig.colorbar(im_1, ax=axs[1], ticks=tick_1, fraction=0.046, pad=0.08, orientation="horizontal")
cbar_2 = fig.colorbar(im_2, ax=axs[2], ticks=tick_2, fraction=0.046, pad=0.08, orientation="horizontal")
# set font size of the ticks of the colorbars
cbar_0.ax.tick_params(labelsize=5)
cbar_1.ax.tick_params(labelsize=5)
cbar_2.ax.tick_params(labelsize=5)
# adjust the width of the gap between subplots
plt.subplots_adjust(wspace=0.2)
fig.tight_layout()
plt.savefig(path, bbox_extra_artists=[fig], bbox_inches='tight')
def plot_spatial_intensity_animation(lam, points, S, t_slots, grid_size, interval):
"""
Plot spatial intensity as the time goes by. The generated points can be also
plotted on the same 2D space optionally.
"""
assert len(S) == 3, '%d is an invalid dimension of the space.' % len(S)
# remove zero points
points = points[points[:, 0] > 0]
# split points into sequence of time and space.
seq_t, seq_s = points[:, 0], points[:, 1:]
# define the span for each subspace
t_span = np.linspace(S[0][0], S[0][1], t_slots+1)[1:]
x_span = np.linspace(S[1][0], S[1][1], grid_size+1)[:-1]
y_span = np.linspace(S[2][0], S[2][1], grid_size+1)[:-1]
# function for yielding the heatmap over the entire region at a given time
def heatmap(t):
_map = np.zeros((grid_size, grid_size))
sub_seq_t = seq_t[seq_t < t]
sub_seq_s = seq_s[:len(sub_seq_t)]
for x_idx in range(grid_size):
for y_idx in range(grid_size):
s = [x_span[x_idx], y_span[y_idx]]
_map[x_idx][y_idx] = lam.value(t, sub_seq_t, s, sub_seq_s)
return _map
# prepare the heatmap data in advance
print('[%s] preparing the dataset %d × (%d, %d) for plotting.' %
(arrow.now(), t_slots, grid_size, grid_size), file=sys.stderr)
data = np.array([ heatmap(t_span[i]) for i in tqdm(range(t_slots)) ])
print(data.sum(axis=-1).sum(axis=-1).argmax())
# initiate the figure and plot
fig = plt.figure()
# set the image with largest total intensity as the intial plot for automatically setting color range.
# im = plt.imshow(data[data.sum(axis=-1).sum(axis=-1).argmax()], cmap='hot', animated=True)
im = plt.imshow(data[-1], cmap='hot', animated=True)
# function for updating the image of each frame
def animate(i):
# print(t_span[i])
im.set_data(data[i])
return im,
# function for initiating the first image of the animation
def init():
im.set_data(data[0])
return im,
# animation
print('[%s] start animation.' % arrow.now(), file=sys.stderr)
anim = animation.FuncAnimation(fig, animate,
init_func=init, frames=t_slots, interval=interval, blit=True)
# show the plot
plt.show()
# # Set up formatting for the movie files
# Writer = animation.writers['ffmpeg']
# writer = Writer(fps=15, metadata=dict(artist='Woody'), bitrate=1800)
# anim.save('hpp.mp4', writer=writer)
def plot_spatial_intensity_by_frame(lam, points, S, t_slots, grid_size, interval, filename):
"""
Plot spatial intensity as the time goes by. The generated points can be also
plotted on the same 2D space optionally.
"""
assert len(S) == 3, '%d is an invalid dimension of the space.' % len(S)
# remove zero points
points = points[points[:, 0] > 0]
# split points into sequence of time and space.
seq_t, seq_s = points[:, 0], points[:, 1:]
# define the span for each subspace
t_span = np.linspace(S[0][0], S[0][1], t_slots+1)[1:]
x_span = np.linspace(S[1][0], S[1][1], grid_size+1)[:-1]
y_span = np.linspace(S[2][0], S[2][1], grid_size+1)[:-1]
# function for yielding the heatmap over the entire region at a given time
def heatmap(t):
_map = np.zeros((grid_size, grid_size))
sub_seq_t = seq_t[seq_t < t]
sub_seq_s = seq_s[:len(sub_seq_t)]
for x_idx in range(grid_size):
for y_idx in range(grid_size):
s = [x_span[x_idx], y_span[y_idx]]
_map[x_idx][y_idx] = lam.value(t, sub_seq_t, s, sub_seq_s)
return _map
# prepare the heatmap data in advance
print('[%s] preparing the dataset %d × (%d, %d) for plotting.' %
(arrow.now(), t_slots, grid_size, grid_size), file=sys.stderr)
data = np.array([ heatmap(t_span[i]) for i in tqdm(range(t_slots)) ])
print(data[-1].min(), data[-1].max())
for i in range(t_slots):
print(i)
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111)
im = ax.imshow(data[i], cmap='hot', vmin=.2, vmax=3.)
curt = (i / t_slots) * (S[0][1] - S[0][0]) + S[0][0]
hisp = points[points[:, 0] <= curt]
hisp = hisp[:, 1:]
hisp = (hisp - np.array([[S[1][0], S[2][0]]])) / 2 * grid_size
ax.scatter(hisp[:, 1], hisp[:, 0], s=100, c="#90ee90", alpha=0.6, marker="*")
plt.axis('off')
fig.tight_layout()
fig.savefig("results/%s-%d.pdf" % (filename, i))
plt.clf()
def spatial_intensity_on_map(
path, # html saving path
da, # data adapter object defined in utils.py
lam, # lambda object defined in stppg.py
data, # a sequence of data points [seq_len, 3] happened in the past
seq_ind, # index of sequence for visualization
t, # normalized observation moment (t)
xlim, # real observation x range
ylim, # real observation y range
ngrid=100):
"""Plot spatial intensity at time t over the entire map given its coordinates limits."""
# data preparation
# - remove the first element in the seq, since t_0 is always 0,
# which will cause numerical issue when computing lambda value
seqs = da.normalize(data)[:, 1:, :]
seq = seqs[seq_ind] # visualize the sequence indicated by seq_ind
seq = seq[np.nonzero(seq[:, 0])[0], :] # only retain nonzero values
print(seq)
seq_t, seq_s = seq[:, 0], seq[:, 1:]
sub_seq_t = seq_t[seq_t < t] # only retain values before time t.
sub_seq_s = seq_s[:len(sub_seq_t)]
# generate spatial grid polygons
xmin, xmax, width = xlim[0], xlim[1], xlim[1] - xlim[0]
ymin, ymax, height = ylim[0], ylim[1], ylim[1] - ylim[0]
grid_height, grid_width = height / ngrid, width / ngrid
x_left_origin = xmin
x_right_origin = xmin + grid_width
y_top_origin = ymax
y_bottom_origin = ymax - grid_height
polygons = [] # spatial polygons
lam_dict = {} # spatial intensity
_id = 0
for i in range(ngrid):
y_top = y_top_origin
y_bottom = y_bottom_origin
for j in range(ngrid):
# append the intensity value to the list
s = da.normalize_location((x_left_origin + x_right_origin) / 2., (y_top + y_bottom) / 2.)
v = lam.value(t, sub_seq_t, s, sub_seq_s)
lam_dict[str(_id)] = np.log(v)
_id += 1
# append polygon to the list
polygons.append(Polygon(
[(y_top, x_left_origin), (y_top, x_right_origin), (y_bottom, x_right_origin), (y_bottom, x_left_origin)]))
# update coordinates
y_top = y_top - grid_height
y_bottom = y_bottom - grid_height
x_left_origin += grid_width
x_right_origin += grid_width
# convert polygons to geopandas object
geo_df = geopandas.GeoSeries(polygons)
# init map
_map = folium.Map(location=[sum(xlim)/2., sum(ylim)/2.], zoom_start=11, zoom_control=True)
# _map = folium.Map(location=[sum(xlim)/2., sum(ylim)/2.], zoom_start=6, zoom_control=True, tiles='Stamen Terrain')
# plot polygons on the map
print(min(lam_dict.values()), max(lam_dict.values()))
lam_cm = branca.colormap.linear.YlOrRd_09.scale(min(lam_dict.values()), max(lam_dict.values())) # scale(10, 5000) # colorbar for intensity values
poi_cm = branca.colormap.linear.PuBu_09.scale(min(sub_seq_t), max(sub_seq_t)) # colorbar for lasting time of points
folium.GeoJson(
data = geo_df.to_json(),
style_function = lambda feature: {
'fillColor': lam_cm(lam_dict[feature['id']]),
'fillOpacity': .5,
'weight': 0.}).add_to(_map)
# plot markers on the map
for i in range(len(sub_seq_t)):
x, y = da.restore_location(*sub_seq_s[i])
folium.Circle(
location=[x, y],
radius=10, # sub_seq_t[i] * 100,
color=poi_cm(sub_seq_t[i]),
fill=True,
fill_color='blue').add_to(_map)
# save the map
_map.save(path)
class DataAdapter():
"""
A helper class for normalizing and restoring data to the specific data range.
init_data: numpy data points with shape [batch_size, seq_len, 3] that defines the x, y, t limits
S: data spatial range. eg. [[-1., 1.], [-1., 1.]]
T: data temporal range. eg. [0., 10.]
"""
def __init__(self, init_data, S=[[-1, 1], [-1, 1]], T=[0., 10.], xlim=None, ylim=None):
self.data = init_data
self.T = T
self.S = S
self.tlim = [ init_data[:, :, 0].min(), init_data[:, :, 0].max() ]
mask = np.nonzero(init_data[:, :, 0])
x_nonzero = init_data[:, :, 1][mask]
y_nonzero = init_data[:, :, 2][mask]
self.xlim = [ x_nonzero.min(), x_nonzero.max() ] if xlim is None else xlim
self.ylim = [ y_nonzero.min(), y_nonzero.max() ] if ylim is None else ylim
print(self.tlim)
print(self.xlim)
print(self.ylim)
def normalize(self, data):
"""normalize batches of data points to the specified range"""
rdata = np.copy(data)
for b in range(len(rdata)):
# scale x
rdata[b, np.nonzero(rdata[b, :, 0]), 1] = \
(rdata[b, np.nonzero(rdata[b, :, 0]), 1] - self.xlim[0]) / \
(self.xlim[1] - self.xlim[0]) * (self.S[0][1] - self.S[0][0]) + self.S[0][0]
# scale y
rdata[b, np.nonzero(rdata[b, :, 0]), 2] = \
(rdata[b, np.nonzero(rdata[b, :, 0]), 2] - self.ylim[0]) / \
(self.ylim[1] - self.ylim[0]) * (self.S[1][1] - self.S[1][0]) + self.S[1][0]
# scale t
rdata[b, np.nonzero(rdata[b, :, 0]), 0] = \
(rdata[b, np.nonzero(rdata[b, :, 0]), 0] - self.tlim[0]) / \
(self.tlim[1] - self.tlim[0]) * (self.T[1] - self.T[0]) + self.T[0]
return rdata
def restore(self, data):
"""restore the normalized batches of data points back to their real ranges."""
ndata = np.copy(data)
for b in range(len(ndata)):
# scale x
ndata[b, np.nonzero(ndata[b, :, 0]), 1] = \
(ndata[b, np.nonzero(ndata[b, :, 0]), 1] - self.S[0][0]) / \
(self.S[0][1] - self.S[0][0]) * (self.xlim[1] - self.xlim[0]) + self.xlim[0]
# scale y
ndata[b, np.nonzero(ndata[b, :, 0]), 2] = \
(ndata[b, np.nonzero(ndata[b, :, 0]), 2] - self.S[1][0]) / \
(self.S[1][1] - self.S[1][0]) * (self.ylim[1] - self.ylim[0]) + self.ylim[0]
# scale t
ndata[b, np.nonzero(ndata[b, :, 0]), 0] = \
(ndata[b, np.nonzero(ndata[b, :, 0]), 0] - self.T[0]) / \
(self.T[1] - self.T[0]) * (self.tlim[1] - self.tlim[0]) + self.tlim[0]
return ndata
def normalize_location(self, x, y):
"""normalize a single data location to the specified range"""
_x = (x - self.xlim[0]) / (self.xlim[1] - self.xlim[0]) * (self.S[0][1] - self.S[0][0]) + self.S[0][0]
_y = (y - self.ylim[0]) / (self.ylim[1] - self.ylim[0]) * (self.S[1][1] - self.S[1][0]) + self.S[1][0]
return np.array([_x, _y])
def restore_location(self, x, y):
"""restore a single data location back to the its original range"""
_x = (x - self.S[0][0]) / (self.S[0][1] - self.S[0][0]) * (self.xlim[1] - self.xlim[0]) + self.xlim[0]
_y = (y - self.S[1][0]) / (self.S[1][1] - self.S[1][0]) * (self.ylim[1] - self.ylim[0]) + self.ylim[0]
return np.array([_x, _y])
def __str__(self):
raw_data_str = "raw data example:\n%s\n" % self.data[:1]
nor_data_str = "normalized data example:\n%s" % self.normalize(self.data[:1])
return raw_data_str + nor_data_str