forked from benanne/kaggle-ndsb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
597 lines (440 loc) · 21.2 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import glob
import os
import numpy as np
import skimage.io
import skimage.transform
import multiprocessing as mp
import utils
directories = glob.glob("data/train/*")
class_names = [os.path.basename(d) for d in directories]
class_names.sort()
num_classes = len(class_names)
paths_train = glob.glob("data/train/*/*")
paths_train.sort()
paths_test = glob.glob("data/test/*")
paths_test.sort()
paths = {
'train': paths_train,
'test': paths_test,
}
# labels_train = np.zeros(len(paths['train']), dtype='int32')
# for k, path in enumerate(paths['train']):
# class_name = os.path.basename(os.path.dirname(path))
# labels_train[k] = class_names.index(class_name)
labels_train = utils.load_gz("data/labels_train.npy.gz")
default_augmentation_params = {
'zoom_range': (1 / 1.1, 1.1),
'rotation_range': (0, 360),
'shear_range': (0, 0),
'translation_range': (-4, 4),
'do_flip': True,
'allow_stretch': False,
}
no_augmentation_params = {
'zoom_range': (1.0, 1.0),
'rotation_range': (0, 0),
'shear_range': (0, 0),
'translation_range': (0, 0),
'do_flip': False,
'allow_stretch': False,
}
no_augmentation_params_gaussian = {
'zoom_std': 0.0,
'rotation_range': (0, 0),
'shear_std': 0.0,
'translation_std': 0.0,
'do_flip': False,
'stretch_std': 0.0,
}
tform_identity = skimage.transform.AffineTransform()
# def load(subset='train'):
# """
# Load all images into memory for faster processing
# """
# images = np.empty(len(paths[subset]), dtype='object')
# for k, path in enumerate(paths[subset]):
# img = skimage.io.imread(path, as_grey=True)
# images[k] = img
# return images
def load(subset='train'):
"""
Load all images into memory for faster processing
"""
return utils.load_gz("data/images_%s.npy.gz" % subset)
def uint_to_float(img):
return 1 - (img / np.float32(255.0))
def extract_image_patch(chunk_dst, img):
"""
extract a correctly sized patch from img and place it into chunk_dst,
which assumed to be preinitialized to zeros.
"""
# # DEBUG: draw a border to see where the image ends up
# img[0, :] = 127
# img[-1, :] = 127
# img[:, 0] = 127
# img[:, -1] = 127
p_x, p_y = chunk_dst.shape
im_x, im_y = img.shape
offset_x = (im_x - p_x) // 2
offset_y = (im_y - p_y) // 2
if offset_x < 0:
cx = slice(-offset_x, -offset_x + im_x)
ix = slice(0, im_x)
else:
cx = slice(0, p_x)
ix = slice(offset_x, offset_x + p_x)
if offset_y < 0:
cy = slice(-offset_y, -offset_y + im_y)
iy = slice(0, im_y)
else:
cy = slice(0, p_y)
iy = slice(offset_y, offset_y + p_y)
chunk_dst[cx, cy] = uint_to_float(img[ix, iy])
def patches_gen(images, labels, patch_size=(50, 50), chunk_size=4096, num_chunks=100, rng=np.random):
p_x, p_y = patch_size
for n in xrange(num_chunks):
indices = rng.randint(0, len(images), chunk_size)
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_y = np.zeros((chunk_size,), dtype='float32')
for k, idx in enumerate(indices):
img = images[indices[k]]
extract_image_patch(chunk_x[k], img)
chunk_y[k] = labels[indices[k]]
yield chunk_x, chunk_y
def patches_gen_ordered(images, patch_size=(50, 50), chunk_size=4096):
p_x, p_y = patch_size
num_images = len(images)
num_chunks = int(np.ceil(num_images / float(chunk_size)))
idx = 0
for n in xrange(num_chunks):
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_length = chunk_size
for k in xrange(chunk_size):
if idx >= num_images:
chunk_length = k
break
img = images[idx]
extract_image_patch(chunk_x[k], img)
idx += 1
yield chunk_x, chunk_length
## augmentation
def fast_warp(img, tf, output_shape=(50, 50), mode='constant', order=1):
"""
This wrapper function is faster than skimage.transform.warp
"""
m = tf.params # tf._matrix is
return skimage.transform._warps_cy._warp_fast(img, m, output_shape=output_shape, mode=mode, order=order)
def build_centering_transform(image_shape, target_shape=(50, 50)):
rows, cols = image_shape
trows, tcols = target_shape
shift_x = (cols - tcols) / 2.0
shift_y = (rows - trows) / 2.0
return skimage.transform.SimilarityTransform(translation=(shift_x, shift_y))
def build_rescale_transform_slow(downscale_factor, image_shape, target_shape):
"""
This mimics the skimage.transform.resize function.
The resulting image is centered.
"""
rows, cols = image_shape
trows, tcols = target_shape
col_scale = row_scale = downscale_factor
src_corners = np.array([[1, 1], [1, rows], [cols, rows]]) - 1
dst_corners = np.zeros(src_corners.shape, dtype=np.double)
# take into account that 0th pixel is at position (0.5, 0.5)
dst_corners[:, 0] = col_scale * (src_corners[:, 0] + 0.5) - 0.5
dst_corners[:, 1] = row_scale * (src_corners[:, 1] + 0.5) - 0.5
tform_ds = skimage.transform.AffineTransform()
tform_ds.estimate(src_corners, dst_corners)
# centering
shift_x = cols / (2.0 * downscale_factor) - tcols / 2.0
shift_y = rows / (2.0 * downscale_factor) - trows / 2.0
tform_shift_ds = skimage.transform.SimilarityTransform(translation=(shift_x, shift_y))
return tform_shift_ds + tform_ds
def build_rescale_transform_fast(downscale_factor, image_shape, target_shape):
"""
estimating the correct rescaling transform is slow, so just use the
downscale_factor to define a transform directly. This probably isn't
100% correct, but it shouldn't matter much in practice.
"""
rows, cols = image_shape
trows, tcols = target_shape
tform_ds = skimage.transform.AffineTransform(scale=(downscale_factor, downscale_factor))
# centering
shift_x = cols / (2.0 * downscale_factor) - tcols / 2.0
shift_y = rows / (2.0 * downscale_factor) - trows / 2.0
tform_shift_ds = skimage.transform.SimilarityTransform(translation=(shift_x, shift_y))
return tform_shift_ds + tform_ds
build_rescale_transform = build_rescale_transform_fast
def build_center_uncenter_transforms(image_shape):
"""
These are used to ensure that zooming and rotation happens around the center of the image.
Use these transforms to center and uncenter the image around such a transform.
"""
center_shift = np.array([image_shape[1], image_shape[0]]) / 2.0 - 0.5 # need to swap rows and cols here apparently! confusing!
tform_uncenter = skimage.transform.SimilarityTransform(translation=-center_shift)
tform_center = skimage.transform.SimilarityTransform(translation=center_shift)
return tform_center, tform_uncenter
def build_augmentation_transform(zoom=(1.0, 1.0), rotation=0, shear=0, translation=(0, 0), flip=False):
if flip:
shear += 180
rotation += 180
# shear by 180 degrees is equivalent to rotation by 180 degrees + flip.
# So after that we rotate it another 180 degrees to get just the flip.
tform_augment = skimage.transform.AffineTransform(scale=(1/zoom[0], 1/zoom[1]), rotation=np.deg2rad(rotation), shear=np.deg2rad(shear), translation=translation)
return tform_augment
def random_perturbation_transform(zoom_range, rotation_range, shear_range, translation_range, do_flip=True, allow_stretch=False, rng=np.random):
shift_x = rng.uniform(*translation_range)
shift_y = rng.uniform(*translation_range)
translation = (shift_x, shift_y)
rotation = rng.uniform(*rotation_range)
shear = rng.uniform(*shear_range)
if do_flip:
flip = (rng.randint(2) > 0) # flip half of the time
else:
flip = False
# random zoom
log_zoom_range = [np.log(z) for z in zoom_range]
if isinstance(allow_stretch, float):
log_stretch_range = [-np.log(allow_stretch), np.log(allow_stretch)]
zoom = np.exp(rng.uniform(*log_zoom_range))
stretch = np.exp(rng.uniform(*log_stretch_range))
zoom_x = zoom * stretch
zoom_y = zoom / stretch
elif allow_stretch is True: # avoid bugs, f.e. when it is an integer
zoom_x = np.exp(rng.uniform(*log_zoom_range))
zoom_y = np.exp(rng.uniform(*log_zoom_range))
else:
zoom_x = zoom_y = np.exp(rng.uniform(*log_zoom_range))
# the range should be multiplicatively symmetric, so [1/1.1, 1.1] instead of [0.9, 1.1] makes more sense.
return build_augmentation_transform((zoom_x, zoom_y), rotation, shear, translation, flip)
def perturb(img, augmentation_params, target_shape=(50, 50), rng=np.random):
# # DEBUG: draw a border to see where the image ends up
# img[0, :] = 0.5
# img[-1, :] = 0.5
# img[:, 0] = 0.5
# img[:, -1] = 0.5
tform_centering = build_centering_transform(img.shape, target_shape)
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = random_perturbation_transform(rng=rng, **augmentation_params)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
return fast_warp(img, tform_centering + tform_augment, output_shape=target_shape, mode='constant').astype('float32')
def patches_gen_augmented(images, labels, patch_size=(50, 50), chunk_size=4096,
num_chunks=100, rng=np.random, rng_aug=np.random, augmentation_params=default_augmentation_params):
p_x, p_y = patch_size
if augmentation_params is None:
augmentation_params = no_augmentation_params
for n in xrange(num_chunks):
indices = rng.randint(0, len(images), chunk_size)
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_y = labels[indices].astype('float32')
for k, idx in enumerate(indices):
img = images[idx]
img = uint_to_float(img)
chunk_x[k] = perturb(img, augmentation_params, target_shape=patch_size, rng=rng_aug)
yield chunk_x, chunk_y
## RESCALING
def perturb_rescaled(img, scale, augmentation_params, target_shape=(50, 50), rng=np.random):
"""
scale is a DOWNSCALING factor.
"""
tform_rescale = build_rescale_transform(scale, img.shape, target_shape) # also does centering
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = random_perturbation_transform(rng=rng, **augmentation_params)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
return fast_warp(img, tform_rescale + tform_augment, output_shape=target_shape, mode='constant').astype('float32')
def rescaled_patches_gen_augmented(images, labels, estimate_scale_func, patch_size=(50, 50),
chunk_size=4096, num_chunks=100, rng=np.random, rng_aug=np.random, augmentation_params=default_augmentation_params):
p_x, p_y = patch_size
if augmentation_params is None:
augmentation_params = no_augmentation_params
for n in xrange(num_chunks):
indices = rng.randint(0, len(images), chunk_size)
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_y = labels[indices].astype('float32')
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
for k, idx in enumerate(indices):
img = images[idx]
img = uint_to_float(img)
scale = estimate_scale_func(img)
chunk_x[k] = perturb_rescaled(img, scale, augmentation_params, target_shape=patch_size, rng=rng_aug)
chunk_shape[k] = img.shape
yield chunk_x, chunk_y, chunk_shape
def rescaled_patches_gen_ordered(images, estimate_scale_func, patch_size=(50, 50), chunk_size=4096,
augmentation_params=no_augmentation_params, rng=np.random, rng_aug=np.random):
p_x, p_y = patch_size
num_images = len(images)
num_chunks = int(np.ceil(num_images / float(chunk_size)))
idx = 0
for n in xrange(num_chunks):
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
chunk_length = chunk_size
for k in xrange(chunk_size):
if idx >= num_images:
chunk_length = k
break
img = images[idx]
img = uint_to_float(img)
scale = estimate_scale_func(img)
chunk_x[k] = perturb_rescaled(img, scale, augmentation_params, target_shape=patch_size, rng=rng_aug)
chunk_shape[k] = img.shape
idx += 1
yield chunk_x, chunk_shape, chunk_length
# for test-time augmentation
def perturb_rescaled_fixed(img, scale, tform_augment, target_shape=(50, 50)):
"""
scale is a DOWNSCALING factor.
"""
tform_rescale = build_rescale_transform(scale, img.shape, target_shape) # also does centering
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
return fast_warp(img, tform_rescale + tform_augment, output_shape=target_shape, mode='constant').astype('float32')
def rescaled_patches_gen_fixed(images, estimate_scale_func, patch_size=(50, 50), chunk_size=4096,
augmentation_transforms=None, rng=np.random):
if augmentation_transforms is None:
augmentation_transforms = [tform_identity]
p_x, p_y = patch_size
num_images = len(images)
num_tfs = len(augmentation_transforms)
num_patches = num_images * num_tfs
num_chunks = int(np.ceil(num_patches / float(chunk_size)))
idx = 0
for n in xrange(num_chunks):
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
chunk_length = chunk_size
for k in xrange(chunk_size):
if idx >= num_patches:
chunk_length = k
break
img = images[idx // num_tfs]
img = uint_to_float(img)
tf = augmentation_transforms[idx % num_tfs]
scale = estimate_scale_func(img) # could technically be cached but w/e
chunk_x[k] = perturb_rescaled_fixed(img, scale, tf, target_shape=patch_size)
chunk_shape[k] = img.shape
idx += 1
yield chunk_x, chunk_shape, chunk_length
### MULTISCALE GENERATORS
def perturb_multiscale(img, scale_factors, augmentation_params, target_shapes, rng=np.random):
"""
scale is a DOWNSCALING factor.
"""
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = random_perturbation_transform(rng=rng, **augmentation_params)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
output = []
for scale, target_shape in zip(scale_factors, target_shapes):
if isinstance(scale, skimage.transform.ProjectiveTransform):
tform_rescale = scale
else:
tform_rescale = build_rescale_transform(scale, img.shape, target_shape) # also does centering
output.append(fast_warp(img, tform_rescale + tform_augment, output_shape=target_shape, mode='constant').astype('float32'))
return output
def multiscale_patches_gen_augmented(images, labels, scale_factors=[1.0], patch_sizes=[(50, 50)],
chunk_size=4096, num_chunks=100, rng=np.random, rng_aug=np.random, augmentation_params=default_augmentation_params):
assert len(patch_sizes) == len(scale_factors)
if augmentation_params is None:
augmentation_params = no_augmentation_params
for n in xrange(num_chunks):
indices = rng.randint(0, len(images), chunk_size)
chunks_x = [np.zeros((chunk_size, p_x, p_y), dtype='float32') for p_x, p_y in patch_sizes]
chunk_y = labels[indices].astype('float32')
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
for k, idx in enumerate(indices):
img = images[idx]
img = uint_to_float(img)
sfs = [(sf(img) if callable(sf) else sf) for sf in scale_factors] # support both fixed scale factors and variable scale factors with callables
patches = perturb_multiscale(img, sfs, augmentation_params, target_shapes=patch_sizes, rng=rng_aug)
for chunk_x, patch in zip(chunks_x, patches):
chunk_x[k] = patch
chunk_shape[k] = img.shape
yield chunks_x, chunk_y, chunk_shape
# for test-time augmentation
def perturb_multiscale_fixed(img, scale_factors, tform_augment, target_shapes):
"""
scale is a DOWNSCALING factor.
"""
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
output = []
for scale, target_shape in zip(scale_factors, target_shapes):
if isinstance(scale, skimage.transform.ProjectiveTransform):
tform_rescale = scale
else:
tform_rescale = build_rescale_transform(scale, img.shape, target_shape) # also does centering
output.append(fast_warp(img, tform_rescale + tform_augment, output_shape=target_shape, mode='constant').astype('float32'))
return output
def multiscale_patches_gen_fixed(images, scale_factors=[1.0], patch_sizes=[(50, 50)], chunk_size=4096,
augmentation_transforms=None, rng=np.random):
if augmentation_transforms is None:
augmentation_transforms = [tform_identity]
assert len(patch_sizes) == len(scale_factors)
num_images = len(images)
num_tfs = len(augmentation_transforms)
num_patches = num_images * num_tfs
num_chunks = int(np.ceil(num_patches / float(chunk_size)))
idx = 0
for n in xrange(num_chunks):
chunks_x = [np.zeros((chunk_size, p_x, p_y), dtype='float32') for p_x, p_y in patch_sizes]
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
chunk_length = chunk_size
for k in xrange(chunk_size):
if idx >= num_patches:
chunk_length = k
break
img = images[idx // num_tfs]
img = uint_to_float(img)
tf = augmentation_transforms[idx % num_tfs]
sfs = [(sf(img) if callable(sf) else sf) for sf in scale_factors] # support both fixed scale factors and variable scale factors with callables
patches = perturb_multiscale_fixed(img, sfs, tf, target_shapes=patch_sizes)
for chunk_x, patch in zip(chunks_x, patches):
chunk_x[k] = patch
chunk_shape[k] = img.shape
idx += 1
yield chunks_x, chunk_shape, chunk_length
def intensity_jitter(chunk, std=0.1, rng=np.random):
factors = np.exp(rng.normal(0.0, std, chunk.shape[0])).astype(chunk.dtype)
return chunk * factors[:, None, None]
### GAUSSIAN AUGMENTATION PARAMETER DISTRIBUTIONS
def random_perturbation_transform_gaussian(zoom_std, rotation_range, shear_std, translation_std, do_flip=True, stretch_std=0.0, rng=np.random):
shift_x = rng.normal(0.0, translation_std)
shift_y = rng.normal(0.0, translation_std)
translation = (shift_x, shift_y)
rotation = rng.uniform(*rotation_range)
shear = rng.normal(0.0, shear_std)
if do_flip:
flip = (rng.randint(2) > 0) # flip half of the time
else:
flip = False
zoom = np.exp(rng.normal(0.0, zoom_std))
stretch = np.exp(rng.normal(0.0, stretch_std))
zoom_x = zoom * stretch
zoom_y = zoom / stretch
return build_augmentation_transform((zoom_x, zoom_y), rotation, shear, translation, flip)
def perturb_rescaled_gaussian(img, scale, augmentation_params, target_shape=(50, 50), rng=np.random):
"""
scale is a DOWNSCALING factor.
"""
tform_rescale = build_rescale_transform(scale, img.shape, target_shape) # also does centering
tform_center, tform_uncenter = build_center_uncenter_transforms(img.shape)
tform_augment = random_perturbation_transform_gaussian(rng=rng, **augmentation_params)
tform_augment = tform_uncenter + tform_augment + tform_center # shift to center, augment, shift back (for the rotation/shearing)
return fast_warp(img, tform_rescale + tform_augment, output_shape=target_shape, mode='constant').astype('float32')
def rescaled_patches_gen_augmented_gaussian(images, labels, estimate_scale_func, patch_size=(50, 50),
chunk_size=4096, num_chunks=100, rng=np.random, rng_aug=np.random, augmentation_params=None):
p_x, p_y = patch_size
if augmentation_params is None:
augmentation_params = no_augmentation_params_gaussian
for n in xrange(num_chunks):
indices = rng.randint(0, len(images), chunk_size)
chunk_x = np.zeros((chunk_size, p_x, p_y), dtype='float32')
chunk_y = labels[indices].astype('float32')
chunk_shape = np.zeros((chunk_size, 2), dtype='float32')
for k, idx in enumerate(indices):
img = images[idx]
img = uint_to_float(img)
scale = estimate_scale_func(img)
chunk_x[k] = perturb_rescaled_gaussian(img, scale, augmentation_params, target_shape=patch_size, rng=rng_aug)
chunk_shape[k] = img.shape
yield chunk_x, chunk_y, chunk_shape