forked from benanne/kaggle-ndsb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_convnet.py
executable file
·274 lines (211 loc) · 9.06 KB
/
train_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import numpy as np
import theano
import theano.tensor as T
import lasagne as nn
import time
import os
import sys
import importlib
import cPickle as pickle
from datetime import datetime, timedelta
import string
from itertools import izip
import matplotlib
matplotlib.use('agg')
import pylab as plt
import data
import utils
import buffering
import nn_plankton
from subprocess import Popen
if len(sys.argv) < 2:
sys.exit("Usage: train_convnet.py <configuration_name>")
config_name = sys.argv[1]
config = importlib.import_module("configurations.%s" % config_name)
expid = utils.generate_expid(config_name)
metadata_tmp_path = "/var/tmp/%s.pkl" % expid
metadata_target_path = os.path.join(os.getcwd(), "metadata/%s.pkl" % expid)
print
print "Experiment ID: %s" % expid
print
print "Build model"
model = config.build_model()
if len(model) == 4:
l_ins, l_out, l_resume, l_exclude = model
elif len(model) == 3:
l_ins, l_out, l_resume = model
l_exclude = l_ins[0]
else:
l_ins, l_out = model
l_resume = l_out
l_exclude = l_ins[0]
all_layers = nn.layers.get_all_layers(l_out)
num_params = nn.layers.count_params(l_out)
print " number of parameters: %d" % num_params
print " layer output shapes:"
for layer in all_layers:
name = string.ljust(layer.__class__.__name__, 32)
print " %s %s" % (name, layer.get_output_shape(),)
if hasattr(config, 'build_objective'):
obj = config.build_objective(l_ins, l_out)
else:
obj = nn.objectives.Objective(l_out, loss_function=nn_plankton.log_loss)
train_loss = obj.get_loss()
output = l_out.get_output(deterministic=True)
all_params = nn.layers.get_all_params(l_out)
all_excluded_params = nn.layers.get_all_params(l_exclude)
all_params = list(set(all_params) - set(all_excluded_params))
input_ndims = [len(l_in.get_output_shape()) for l_in in l_ins]
xs_shared = [nn.utils.shared_empty(dim=ndim) for ndim in input_ndims]
y_shared = nn.utils.shared_empty(dim=2)
if hasattr(config, 'learning_rate_schedule'):
learning_rate_schedule = config.learning_rate_schedule
else:
learning_rate_schedule = { 0: config.learning_rate }
learning_rate = theano.shared(np.float32(learning_rate_schedule[0]))
idx = T.lscalar('idx')
givens = {
obj.target_var: y_shared[idx*config.batch_size:(idx+1)*config.batch_size],
}
for l_in, x_shared in zip(l_ins, xs_shared):
givens[l_in.input_var] = x_shared[idx*config.batch_size:(idx+1)*config.batch_size]
if hasattr(config, 'build_updates'):
updates = config.build_updates(train_loss, all_params, learning_rate)
else:
updates = nn.updates.nesterov_momentum(train_loss, all_params, learning_rate, config.momentum)
if hasattr(config, 'censor_updates'):
updates = config.censor_updates(updates, l_out)
iter_train = theano.function([idx], train_loss, givens=givens, updates=updates)
compute_output = theano.function([idx], output, givens=givens, on_unused_input="ignore")
if hasattr(config, 'resume_path'):
print "Load model parameters for resuming"
if hasattr(config, 'pre_init_path'):
print "lresume=lout"
l_resume = l_out
resume_metadata = np.load(config.resume_path)
nn.layers.set_all_param_values(l_resume, resume_metadata['param_values'])
start_chunk_idx = resume_metadata['chunks_since_start'] + 1
chunks_train_idcs = range(start_chunk_idx, config.num_chunks_train)
# set lr to the correct value
current_lr = np.float32(utils.current_learning_rate(learning_rate_schedule, start_chunk_idx))
print " setting learning rate to %.7f" % current_lr
learning_rate.set_value(current_lr)
losses_train = resume_metadata['losses_train']
losses_eval_valid = resume_metadata['losses_eval_valid']
losses_eval_train = resume_metadata['losses_eval_train']
elif hasattr(config, 'pre_init_path'):
print "Load model parameters for initializing first x layers"
resume_metadata = np.load(config.pre_init_path)
nn.layers.set_all_param_values(l_resume, resume_metadata['param_values'][-len(all_excluded_params):])
chunks_train_idcs = range(config.num_chunks_train)
losses_train = []
losses_eval_valid = []
losses_eval_train = []
else:
chunks_train_idcs = range(config.num_chunks_train)
losses_train = []
losses_eval_valid = []
losses_eval_train = []
print "Load data"
config.data_loader.load_train()
if hasattr(config, 'resume_path'):
config.data_loader.set_params(resume_metadata['data_loader_params'])
else:
config.data_loader.estimate_params() # important! this takes care of zmuv parameter estimation etc.
if hasattr(config, 'create_train_gen'):
create_train_gen = config.create_train_gen
else:
create_train_gen = lambda: config.data_loader.create_random_gen(config.data_loader.images_train, config.data_loader.labels_train)
if hasattr(config, 'create_eval_valid_gen'):
create_eval_valid_gen = config.create_eval_valid_gen
else:
create_eval_valid_gen = lambda: config.data_loader.create_fixed_gen(config.data_loader.images_valid, augment=False)
if hasattr(config, 'create_eval_train_gen'):
create_eval_train_gen = config.create_eval_train_gen
else:
create_eval_train_gen = lambda: config.data_loader.create_fixed_gen(config.data_loader.images_train, augment=False)
print "Train model"
start_time = time.time()
prev_time = start_time
copy_process = None
num_batches_chunk = config.chunk_size // config.batch_size
for e, (xs_chunk, y_chunk) in izip(chunks_train_idcs, create_train_gen()):
print "Chunk %d/%d" % (e + 1, config.num_chunks_train)
if e in learning_rate_schedule:
lr = np.float32(learning_rate_schedule[e])
print " setting learning rate to %.7f" % lr
learning_rate.set_value(lr)
print " load training data onto GPU"
for x_shared, x_chunk in zip(xs_shared, xs_chunk):
x_shared.set_value(x_chunk)
y_shared.set_value(y_chunk)
print " batch SGD"
losses = []
for b in xrange(num_batches_chunk):
loss = iter_train(b)
if np.isnan(loss):
raise RuntimeError("NaN DETECTED.")
losses.append(loss)
mean_train_loss = np.mean(losses)
print " mean training loss:\t\t%.6f" % mean_train_loss
losses_train.append(mean_train_loss)
if ((e + 1) % config.validate_every) == 0:
print
print "Validating"
subsets = ["train", "valid"]
gens = [create_eval_train_gen, create_eval_valid_gen]
label_sets = [config.data_loader.labels_train, config.data_loader.labels_valid]
losses_eval = [losses_eval_train, losses_eval_valid]
for subset, create_gen, labels, losses in zip(subsets, gens, label_sets, losses_eval):
print " %s set" % subset
outputs = []
for xs_chunk_eval, chunk_length_eval in create_gen():
num_batches_chunk_eval = int(np.ceil(chunk_length_eval / float(config.batch_size)))
for x_shared, x_chunk_eval in zip(xs_shared, xs_chunk_eval):
x_shared.set_value(x_chunk_eval)
outputs_chunk = []
for b in xrange(num_batches_chunk_eval):
out = compute_output(b)
outputs_chunk.append(out)
outputs_chunk = np.vstack(outputs_chunk)
outputs_chunk = outputs_chunk[:chunk_length_eval] # truncate to the right length
outputs.append(outputs_chunk)
outputs = np.vstack(outputs)
loss = utils.log_loss(outputs, labels)
acc = utils.accuracy(outputs, labels)
print " loss:\t%.6f" % loss
print " acc:\t%.2f%%" % (acc * 100)
print
losses.append(loss)
del outputs
now = time.time()
time_since_start = now - start_time
time_since_prev = now - prev_time
prev_time = now
est_time_left = time_since_start * (float(config.num_chunks_train - (e + 1)) / float(e + 1 - chunks_train_idcs[0]))
eta = datetime.now() + timedelta(seconds=est_time_left)
eta_str = eta.strftime("%c")
print " %s since start (%.2f s)" % (utils.hms(time_since_start), time_since_prev)
print " estimated %s to go (ETA: %s)" % (utils.hms(est_time_left), eta_str)
print
if ((e + 1) % config.save_every) == 0:
print
print "Saving metadata, parameters"
with open(metadata_tmp_path, 'w') as f:
pickle.dump({
'configuration': config_name,
'experiment_id': expid,
'chunks_since_start': e,
'losses_train': losses_train,
'losses_eval_valid': losses_eval_valid,
'losses_eval_train': losses_eval_train,
'time_since_start': time_since_start,
'param_values': nn.layers.get_all_param_values(l_out),
'data_loader_params': config.data_loader.get_params(),
}, f, pickle.HIGHEST_PROTOCOL)
# terminate the previous copy operation if it hasn't finished
if copy_process is not None:
copy_process.terminate()
copy_process = Popen(['cp', metadata_tmp_path, metadata_target_path])
print " saved to %s, copying to %s" % (metadata_tmp_path, metadata_target_path)
print