forked from benanne/kaggle-ndsb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtta.py
71 lines (51 loc) · 2.22 KB
/
tta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Test-time augmentation tools
"""
import itertools
import numpy as np
import ghalton
import data
import icdf
def build_transforms(**kwargs):
"""
kwargs are lists of possible values.
e.g.: build_transforms(rotation=[0, 90, 180, 270], flip=[True, False])
the names of the arguments are the same as for data.build_augmentation_transform.
"""
transforms = []
k = kwargs.keys()
combinations = list(itertools.product(*kwargs.values()))
combinations = [dict(zip(k, vals)) for vals in combinations]
for comb in combinations:
tf = data.build_augmentation_transform(**comb)
transforms.append(tf)
return transforms
def build_quasirandom_transforms(num_transforms, zoom_range, rotation_range, shear_range, translation_range, do_flip=True, allow_stretch=False):
gen = ghalton.Halton(7) # 7 dimensions to sample along
uniform_samples = np.array(gen.get(num_transforms))
tfs = []
for s in uniform_samples:
shift_x = icdf.uniform(s[0], *translation_range)
shift_y = icdf.uniform(s[1], *translation_range)
translation = (shift_x, shift_y)
rotation = icdf.uniform(s[2], *rotation_range)
shear = icdf.uniform(s[3], *shear_range)
if do_flip:
flip = icdf.bernoulli(s[4], p=0.5)
else:
flip = False
log_zoom_range = [np.log(z) for z in zoom_range]
if isinstance(allow_stretch, float):
log_stretch_range = [-np.log(allow_stretch), np.log(allow_stretch)]
zoom = np.exp(icdf.uniform(s[5], *log_zoom_range))
stretch = np.exp(icdf.uniform(s[6], *log_stretch_range))
zoom_x = zoom * stretch
zoom_y = zoom / stretch
elif allow_stretch is True: # avoid bugs, f.e. when it is an integer
zoom_x = np.exp(icdf.uniform(s[5], *log_zoom_range))
zoom_y = np.exp(icdf.uniform(s[6], *log_zoom_range))
else:
zoom_x = zoom_y = np.exp(icdf.uniform(s[5], *log_zoom_range))
# the range should be multiplicatively symmetric, so [1/1.1, 1.1] instead of [0.9, 1.1] makes more sense.
tfs.append(data.build_augmentation_transform((zoom_x, zoom_y), rotation, shear, translation, flip))
return tfs