forked from ZiadHatab/multiline-trl-calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_2.py
165 lines (148 loc) · 6.18 KB
/
example_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Example to demonstrate how to do a 1st-tier mTRL calibration (raw data from VNA).
"""
import os
# need to be installed via pip
import skrf as rf
import numpy as np
import matplotlib.pyplot as plt
# my script (MultiCal.py and TUGmTRL must also be in same folder)
from mTRL import mTRL
class PlotSettings:
# to make plots look better for publication
# https://matplotlib.org/stable/tutorials/introductory/customizing.html
def __init__(self, font_size=10, latex=False):
self.font_size = font_size
self.latex = latex
def __enter__(self):
plt.style.use('seaborn-v0_8-paper')
# make svg output text and not curves
plt.rcParams['svg.fonttype'] = 'none'
# fontsize of the axes title
plt.rc('axes', titlesize=self.font_size*1.2)
# fontsize of the x and y labels
plt.rc('axes', labelsize=self.font_size)
# fontsize of the tick labels
plt.rc('xtick', labelsize=self.font_size)
plt.rc('ytick', labelsize=self.font_size)
# legend fontsize
plt.rc('legend', fontsize=self.font_size*1)
# fontsize of the figure title
plt.rc('figure', titlesize=self.font_size)
# controls default text sizes
plt.rc('text', usetex=self.latex)
#plt.rc('font', size=self.font_size, family='serif', serif='Times New Roman')
plt.rc('lines', linewidth=1.5)
def __exit__(self, exception_type, exception_value, traceback):
plt.style.use('default')
def plot_2x2(NW, fig, axs, f_units='ghz', name='mTRL', title='mTRL'):
NW.frequency.unit = f_units
NW.name = name
for inx in NW.port_tuples:
m = inx[0]
n = inx[1]
NW.plot_s_db(m=m, n=n, ax=axs[inx])
fig.suptitle(title)
fig.tight_layout(pad=1.08)
# main script
if __name__ == '__main__':
# useful functions
c0 = 299792458 # speed of light in vacuum (m/s)
mag2db = lambda x: 20*np.log10(abs(x))
db2mag = lambda x: 10**(x/20)
gamma2ereff = lambda x,f: -(c0/2/np.pi/f*x)**2
ereff2gamma = lambda x,f: 2*np.pi*f/c0*np.sqrt(-(x-1j*np.finfo(complex).eps)) # eps to ensure positive square-root
gamma2dbmm = lambda x: mag2db(np.exp(x.real*1e-3)) # losses dB/mm
# load the measurements
# files' path are reference to script's path
s2p_path = os.path.dirname(os.path.realpath(__file__)) + '\\s2p_example_2\\'
# switch terms
gamma_f = rf.Network(s2p_path + 'VNA_switch_term.s2p').s21
gamma_r = rf.Network(s2p_path + 'VNA_switch_term.s2p').s12
# Calibration standards
L1 = rf.Network(s2p_path + 'MPI_line_0200u.s2p')
L2 = rf.Network(s2p_path + 'MPI_line_0450u.s2p')
L3 = rf.Network(s2p_path + 'MPI_line_0900u.s2p')
L4 = rf.Network(s2p_path + 'MPI_line_1800u.s2p')
L5 = rf.Network(s2p_path + 'MPI_line_3500u.s2p')
L6 = rf.Network(s2p_path + 'MPI_line_5250u.s2p') # used as DUT
SHORT = rf.Network(s2p_path + 'MPI_short.s2p')
lines = [L1, L2, L3, L4, L5, L6]
line_lengths = [200e-6, 450e-6, 900e-6, 1800e-6, 3500e-6, 5250e-6]
reflect = [SHORT]
reflect_est = [-1]
reflect_offset = [-100e-6]
cal = mTRL(lines=lines, line_lengths=line_lengths, reflect=reflect,
reflect_est=reflect_est, reflect_offset=reflect_offset, ereff_est=5+0j,
switch_term=[gamma_f, gamma_r])
DUT = L6
# using NIST MultiCal
cal.run_multical()
k_nist = cal.k
dut_cal_nist = cal.apply_cal(DUT)
gamma_mul = cal.gamma
ereff_mul = cal.ereff
# using TUG mTRL
cal.run_tug()
k_tug = cal.k
dut_cal_tug = cal.apply_cal(DUT)
gamma_tug = cal.gamma
ereff_tug = cal.ereff
# using skrf
line_lengths = line_lengths
offset = line_lengths[0]
line_lengths = [i - offset for i in line_lengths] # to set the reference the same as my code
measured = [L1, SHORT, L2, L3, L4, L5, L6]
cal_skrf = rf.NISTMultilineTRL(
measured = measured,
Grefls = [-1],
l = line_lengths,
refl_offset = reflect_offset,
er_est = 5+0j,
switch_terms = (gamma_f, gamma_r)
)
cal_skrf.run()
dut_cal_skrf = cal_skrf.apply_cal(DUT)
gamma_skrf = cal_skrf.gamma
ereff_skrf = cal_skrf.er_eff
with PlotSettings(14):
fig, axs = plt.subplots(2,2, figsize=(10,7))
fig.set_dpi(600)
plot_2x2(dut_cal_nist, fig, axs, name='NIST MultiCal', title='Calibrated DUT (Line)')
plot_2x2(dut_cal_tug, fig, axs, name='TUG mTRL', title='Calibrated DUT (Line)')
plot_2x2(dut_cal_skrf, fig, axs, name='skrf', title='Calibrated DUT (Line)')
f = L1.frequency.f
with PlotSettings(14):
fig, axs = plt.subplots(1,2, figsize=(10,3.8))
fig.set_dpi(600)
fig.tight_layout(pad=2)
ax = axs[0]
ax.plot(f*1e-9, ereff_mul.real, lw=2, label='NIST MultiCal',
marker='^', markevery=50, markersize=10)
ax.plot(f*1e-9, ereff_tug.real, lw=2, label='TUG mTRL',
marker='v', markevery=50, markersize=10)
ax.plot(f*1e-9, ereff_skrf.real, lw=2, label='skrf',
marker='>', markevery=50, markersize=10)
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel('Relative effective permittivity')
ax.set_ylim([4.5, 6])
ax.set_yticks(np.arange(4.5, 6.01, 0.3))
ax.set_xlim(0,150)
ax.set_xticks(np.arange(0,151,30))
ax.legend()
ax = axs[1]
ax.plot(f*1e-9, gamma2dbmm(gamma_mul), lw=2, label='NIST MultiCal',
marker='^', markevery=50, markersize=10)
ax.plot(f*1e-9, gamma2dbmm(gamma_tug), lw=2, label='TUG mTRL',
marker='v', markevery=50, markersize=10)
ax.plot(f*1e-9, gamma2dbmm(gamma_skrf), lw=2, label='skrf',
marker='>', markevery=50, markersize=10)
ax.set_xlabel('Frequency (GHz)')
ax.set_ylabel('Loss (dB/mm)')
ax.set_ylim([0, 1.5])
ax.set_yticks(np.arange(0, 1.51, 0.3))
ax.set_xlim(0,150)
ax.set_xticks(np.arange(0,151,30))
ax.legend()
plt.show()
# EOF