-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatnorm.c
102 lines (86 loc) · 3 KB
/
matnorm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include "matnorm.h"
/*************************************
* Compute norm and condition number *
*************************************/
// Compute infinity norm using explicit formula.
double normA(size_t n, double a, double b) {
double tmp = floor((1.+b)/b);
double k = tmp<n-1?tmp:n-1;
double iprime = floor(1./a);
double gamma1 = 1. + (n-1) * b;
double max12;
if (iprime < n) {
double gamma2 = 1. + (2.*k-iprime+1.)*a +
(n-iprime)*b*(-k*k + k + 3.*iprime*(iprime-1.)/2. - n*iprime + n)*a*b;
max12 = gamma1 > gamma2?gamma1:gamma2;
} else {
max12 = gamma1;
}
double gamma3 = 1. + (2.*k-n+1)*a + (-k*k + k + n*(n-1.)/2.)*a*b;
return max12 > gamma3?max12:gamma3;
}
// Compute infinity norm of the inverse using explicit formula.
double normAinv(size_t n, double a, double b) {
double r = (1.+a)*(1.+b);
double delta1 = 1.+(1.+a)*b*(1.-pow(r,n-1))/(1.-r);
double delta2 = pow(1.+a,n-1.);
return delta1>delta2?delta1:delta2;
}
// Compute infinity-norm condition number using explicit formulae.
double condA(size_t n, double a, double b) {
return normA(n, a, b) * normAinv(n, a, b);
}
/*******************/
/* Find parameters */
/*******************/
// Function used for the optimization.
double optfun(double b, void *params) {
struct optfun_params *p;
p = (struct optfun_params *)params;
return condA(p->n, p->ratio * b, b) - p->kappa;
}
double findparameters(size_t n, double ratio, double kappa) {
// Initialize GSL function.
gsl_function gslfun;
struct optfun_params params = {n, ratio, kappa};
gslfun.function = &optfun;
gslfun.params = ¶ms;
// Set limits so that 0 < a < 1
double b_lo = DBL_EPSILON; // *n/1000;
/* double b_hi = 10*sqrt(sqrt(sqrt(sqrt(kappa)))) / n; */
double b_hi = 1 / ratio;
while (!isfinite(condA(n,ratio*b_hi,b_hi)))
b_hi /= 2;
// Allocate an instance of Brent's solver.
gsl_root_fsolver *solver;
solver = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
gsl_root_fsolver_set(solver, &gslfun, b_lo, b_hi);
const size_t MAXITER = 100;
const double TOL = pow(2,-52);
size_t i;
int status = GSL_CONTINUE;
double approx = 0, bound_lo, bound_hi;
for (i=0; i < MAXITER && status == GSL_CONTINUE; i++) {
// Perform one step and check convergence.
status = gsl_root_fsolver_iterate(solver);
if (status != GSL_SUCCESS) { // error
break;
} else { // if status == GSL_SUCCESS exits.
approx = gsl_root_fsolver_root(solver);
bound_lo = gsl_root_fsolver_x_lower(solver);
bound_hi = gsl_root_fsolver_x_upper(solver);
status = gsl_root_test_interval(bound_lo, bound_hi, 0, TOL);
}
}
assert(fabs(condA(n,ratio*approx,approx)-kappa)/kappa < sqrt(FLT_EPSILON)/2);
// Deallocate the solver.
gsl_root_fsolver_free(solver);
// Return approximations, and print warning if needed.
if (status == GSL_SUCCESS) {
return approx;
} else {
printf("Solver did not converge to tolerance %.2e after %lu iterations.\n",
TOL, MAXITER);
return approx;
}
}