forked from jvanvugt/pytorch-unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
127 lines (105 loc) · 4.22 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Adapted from https://discuss.pytorch.org/t/unet-implementation/426
import torch
from torch import nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(
self,
in_channels=1,
n_classes=2,
depth=5,
wf=6,
padding=False,
batch_norm=False,
up_mode='upconv',
):
"""
Implementation of
U-Net: Convolutional Networks for Biomedical Image Segmentation
(Ronneberger et al., 2015)
https://arxiv.org/abs/1505.04597
Using the default arguments will yield the exact version used
in the original paper
Args:
in_channels (int): number of input channels
n_classes (int): number of output channels
depth (int): depth of the network
wf (int): number of filters in the first layer is 2**wf
padding (bool): if True, apply padding such that the input shape
is the same as the output.
This may introduce artifacts
batch_norm (bool): Use BatchNorm after layers with an
activation function
up_mode (str): one of 'upconv' or 'upsample'.
'upconv' will use transposed convolutions for
learned upsampling.
'upsample' will use bilinear upsampling.
"""
super(UNet, self).__init__()
assert up_mode in ('upconv', 'upsample')
self.padding = padding
self.depth = depth
prev_channels = in_channels
self.down_path = nn.ModuleList()
for i in range(depth):
self.down_path.append(
UNetConvBlock(prev_channels, 2 ** (wf + i), padding, batch_norm)
)
prev_channels = 2 ** (wf + i)
self.up_path = nn.ModuleList()
for i in reversed(range(depth - 1)):
self.up_path.append(
UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm)
)
prev_channels = 2 ** (wf + i)
self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)
def forward(self, x):
blocks = []
for i, down in enumerate(self.down_path):
x = down(x)
if i != len(self.down_path) - 1:
blocks.append(x)
x = F.max_pool2d(x, 2)
for i, up in enumerate(self.up_path):
x = up(x, blocks[-i - 1])
return self.last(x)
class UNetConvBlock(nn.Module):
def __init__(self, in_size, out_size, padding, batch_norm):
super(UNetConvBlock, self).__init__()
block = []
block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding)))
block.append(nn.ReLU())
if batch_norm:
block.append(nn.BatchNorm2d(out_size))
block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding)))
block.append(nn.ReLU())
if batch_norm:
block.append(nn.BatchNorm2d(out_size))
self.block = nn.Sequential(*block)
def forward(self, x):
out = self.block(x)
return out
class UNetUpBlock(nn.Module):
def __init__(self, in_size, out_size, up_mode, padding, batch_norm):
super(UNetUpBlock, self).__init__()
if up_mode == 'upconv':
self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)
elif up_mode == 'upsample':
self.up = nn.Sequential(
nn.Upsample(mode='bilinear', scale_factor=2),
nn.Conv2d(in_size, out_size, kernel_size=1),
)
self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm)
def center_crop(self, layer, target_size):
_, _, layer_height, layer_width = layer.size()
diff_y = (layer_height - target_size[0]) // 2
diff_x = (layer_width - target_size[1]) // 2
return layer[
:, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])
]
def forward(self, x, bridge):
up = self.up(x)
crop1 = self.center_crop(bridge, up.shape[2:])
out = torch.cat([up, crop1], 1)
out = self.conv_block(out)
return out