-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLUTify.py
247 lines (223 loc) · 10.9 KB
/
LUTify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from PIL import Image
import numpy as np, argparse, re
parser = argparse.ArgumentParser(description="Useful script to resize, combine luts, or convert your HALD images to CUBE format and viceversa")
parser.add_argument("--input", "-i", help="set input image or CUBE file", type=str, default="")
parser.add_argument("--combine", "-c", help="set 2nd lut to combine with input", type=str, default="")
parser.add_argument("--mixer", "-x", help="optional: mix amount from lut1(0) to lut2(100)", type=int, default=50)
parser.add_argument("--preserve", "-p", help="optional: preserve max size when combining luts", action="store_true")
parser.add_argument("--output", "-o", help="set output image or CUBE file", type=str, default="")
parser.add_argument("--format", "-f", help="output: choose type of HALD between \"hald\" and \"square\"" ,choices = ["hald","square"])
parser.add_argument("--identity", "-id", help="optional: generate an identity HALD", action="store_true")
parser.add_argument("--size", "-s", help="optional: override default output size", type=int)
parser.add_argument("--method", "-m", help="optional: method of interpolation between \"tethraedral\" and \"nearest\"", choices = ["nearest","tetrahedral"], default = "tetrahedral")
parser.add_argument("--rows", "-r", help="optional: number of rows for square format", type = int, default = 0)
parser.add_argument("--flip", "-ud", help="optional: flip upside down RGB values", action="store_true")
args = parser.parse_args()
def nearest(to_resize,size,new_size):
resized = np.empty((new_size,new_size,new_size,3), dtype=to_resize.dtype)
ratio = float(size - 1.0) / float(new_size - 1.0)
for x in range(new_size):
for y in range(new_size):
for z in range(new_size):
lr = sorted((0,int(x*ratio),size-1))[1]
ur = sorted((0,lr+1,size-1))[1]
lg = sorted((0,int(y*ratio),size-1))[1]
ug = sorted((0,lg+1,size-1))[1]
lb = sorted((0,int(z*ratio),size-1))[1]
ub = sorted((0,lb+1,size-1))[1]
r = (lr,ur)[(ur-x*ratio)<(x*ratio-lr)]
g = (lg,ug)[(ug-y*ratio)<(y*ratio-lg)]
b = (lb,ub)[(ub-z*ratio)<(z*ratio-lb)]
resized[x,y,z]=to_resize[r,g,b]
return resized
def tetrahedral(to_resize,size,new_size):
resized = np.empty((new_size,new_size,new_size,3), dtype=to_resize.dtype)
ratio = float(size - 1.0) / float(new_size - 1.0)
for x in range(new_size):
for y in range(new_size):
for z in range(new_size):
lr = sorted((0,int(x*ratio),size-1))[1]
ur = sorted((0,lr+1,size-1))[1]
lg = sorted((0,int(y*ratio),size-1))[1]
ug = sorted((0,lg+1,size-1))[1]
lb = sorted((0,int(z*ratio),size-1))[1]
ub = sorted((0,lb+1,size-1))[1]
fR=x*ratio-lr
fG=y*ratio-lg
fB=z*ratio-lb
if(fG>=fB>=fR):
resized[x,y,z]=(1-fG)*to_resize[lr,lg,lb]+(fG-fB)*to_resize[lr,ug,lb]+(fB-fR)*to_resize[lr,ug,ub]+fR*to_resize[ur,ug,ub]
elif(fB>fR>fG):
resized[x,y,z]=(1-fB)*to_resize[lr,lg,lb]+(fB-fR)*to_resize[lr,lg,ub]+(fR-fG)*to_resize[ur,lg,ub]+fG*to_resize[ur,ug,ub]
elif(fB>fG>=fR):
resized[x,y,z]=(1-fB)*to_resize[lr,lg,lb]+(fB-fG)*to_resize[lr,lg,ub]+(fG-fR)*to_resize[lr,ug,ub]+fR*to_resize[ur,ug,ub]
elif(fR>=fG>fB):
resized[x,y,z]=(1-fR)*to_resize[lr,lg,lb]+(fR-fG)*to_resize[ur,lg,lb]+(fG-fB)*to_resize[ur,ug,lb]+fB*to_resize[ur,ug,ub]
elif(fG>fR>=fB):
resized[x,y,z]=(1-fG)*to_resize[lr,lg,lb]+(fG-fR)*to_resize[lr,ug,lb]+(fR-fB)*to_resize[ur,ug,lb]+fB*to_resize[ur,ug,ub]
elif(fR>=fB>=fG):
resized[x,y,z]=(1-fR)*to_resize[lr,lg,lb]+(fR-fB)*to_resize[ur,lg,lb]+(fB-fG)*to_resize[ur,lg,ub]+fG*to_resize[ur,ug,ub]
return resized
def combine(lut1, lut2, size, mixer):
alpha = ((sorted((0.0,mixer/100.0, 1.0))[1] - 0.5) * 2)
#blend lut2 with identity
if (alpha < 0):
for x in range(size):
for y in range(size):
for z in range(size):
lut2[x,y,z][0] = (1 + alpha) * lut2[x,y,z][0] - alpha * z / (size - 1.0)
lut2[x,y,z][1] = (1 + alpha) * lut2[x,y,z][1] - alpha * y / (size - 1.0)
lut2[x,y,z][2] = (1 + alpha) * lut2[x,y,z][2] - alpha * x / (size - 1.0)
for x in range(size):
for y in range(size):
for z in range(size):
#blend lut1 with identity
if (alpha > 0):
lut1[x,y,z][0] = (1 - alpha) * lut1[x,y,z][0] + alpha * z / (size - 1.0)
lut1[x,y,z][1] = (1 - alpha) * lut1[x,y,z][1] + alpha * y / (size - 1.0)
lut1[x,y,z][2] = (1 - alpha) * lut1[x,y,z][2] + alpha * x / (size - 1.0)
lr = sorted((0,int(lut1[x,y,z][2]*(size-1)), size-1))[1]
ur = sorted((0,lr + 1, size-1))[1]
lg = sorted((0,int(lut1[x,y,z][1]*(size-1)), size-1))[1]
ug = sorted((0,lg + 1, size-1))[1]
lb = sorted((0,int(lut1[x,y,z][0]*(size-1)), size-1))[1]
ub = sorted((0,lb + 1, size-1))[1]
fR=lut1[x,y,z][2]*(size-1)-lr
fG=lut1[x,y,z][1]*(size-1)-lg
fB=lut1[x,y,z][0]*(size-1)-lb
if(fG>=fB>=fR):
lut1[x,y,z]=(1-fG)*lut2[lr,lg,lb]+(fG-fB)*lut2[lr,ug,lb]+(fB-fR)*lut2[lr,ug,ub]+fR*lut2[ur,ug,ub]
elif(fB>fR>fG):
lut1[x,y,z]=(1-fB)*lut2[lr,lg,lb]+(fB-fR)*lut2[lr,lg,ub]+(fR-fG)*lut2[ur,lg,ub]+fG*lut2[ur,ug,ub]
elif(fB>fG>=fR):
lut1[x,y,z]=(1-fB)*lut2[lr,lg,lb]+(fB-fG)*lut2[lr,lg,ub]+(fG-fR)*lut2[lr,ug,ub]+fR*lut2[ur,ug,ub]
elif(fR>=fG>fB):
lut1[x,y,z]=(1-fR)*lut2[lr,lg,lb]+(fR-fG)*lut2[ur,lg,lb]+(fG-fB)*lut2[ur,ug,lb]+fB*lut2[ur,ug,ub]
elif(fG>fR>=fB):
lut1[x,y,z]=(1-fG)*lut2[lr,lg,lb]+(fG-fR)*lut2[lr,ug,lb]+(fR-fB)*lut2[ur,ug,lb]+fB*lut2[ur,ug,ub]
elif(fR>=fB>=fG):
lut1[x,y,z]=(1-fR)*lut2[lr,lg,lb]+(fR-fB)*lut2[ur,lg,lb]+(fB-fG)*lut2[ur,lg,ub]+fG*lut2[ur,ug,ub]
return lut1
def luts_combine(lut1, lut2, size, mixer):
if len(lut1.shape) != 4:
lut1 = lut1.reshape(size,size,size,3)
if len(lut2.shape) != 4:
lut2 = lut2.reshape(size,size,size,3)
if lut1.dtype == "uint8":
lut1 = lut1/255
if lut2.dtype == "uint8":
lut2 = lut2/255
combine(lut1,lut2,size,mixer)
def array_resize(array, size, new_size):
if len(array.shape) != 4:
array = array.reshape(size,size,size,3)
return (nearest(array,size,new_size),tetrahedral(array,size,new_size))[args.method=="tetrahedral"]
def wrapper(standard, array, size):
if standard == "hald":
array = array.reshape(size**3, size**3, 3)
else:
rows = size
if 0 < args.rows < size and size%args.rows==0:
rows = args.rows
array = array.reshape((rows,int(size**2/rows+.5),size**2,size**2, 3))
array = np.concatenate([np.concatenate(array[row], axis=1) for row in range(rows)])
return (array,np.flipud(array))[args.flip]
def identity(size):
return np.mgrid[ 0 : 255 : size**2*1j, 0 : 255 : size**2*1j, 0 : 255 : size**2*1j ].astype(np.uint8).transpose() #transpose because bgr->rgb
def square_unwrap(array,size):
lutSize=size**2
LUT = np.empty((lutSize,lutSize,lutSize,3), dtype=np.uint8)
cubeIndex = 0
for y in range(array.shape[0]):
for x in range(array.shape[1]):
iR = cubeIndex % lutSize
iG = y % lutSize
iB = int(x/lutSize)+(int(y/lutSize)*int(array.shape[0]/lutSize))
LUT[iB,iG,iR]=array[y,x]
cubeIndex+=1
return LUT
if args.identity:
size = (args.size, 8)[not args.size]
standard = (args.format, "hald")[not args.format]
Image.fromarray(wrapper(standard, identity(size), size)).save("Identity_" + standard + ".png")
if args.input.lower().endswith((".cube",".png",".jpg",".jpeg",".tiff")) and args.output.lower().endswith((".cube",".png",".jpg",".jpeg",".tiff")):
try:
title = re.search("[^\\\/]+(?=\.[\w]+$)",args.input)[0]
if args.input.lower().endswith(".cube"):
file = open(args.input,'r').read()
o_array = np.array([i.lower().replace(',', '').split() for i in re.findall("\n[+-]?[0-9]*[.]?[0-9]+\s[+-]?[0-9]*[.]?[0-9]+\s[+-]?[0-9]*[.]?[0-9]+",file)],dtype=float).reshape(-1)
lutSize = int(re.search("_SIZE.*?(\d+)",file).group(1))
input_title = re.search("TITLE.?[\"'](.*?)[\"']",file)
del file
if input_title:
title = input_title.group(1)
size = int((len(o_array)/3)**(1/6)+.5)
else:
o_array = np.array(Image.open(args.input,'r').convert('RGB'), dtype=np.uint8)
size = int((o_array.shape[0]*o_array.shape[1])**(1/6)+.5)
lutSize = size**2
if o_array[0,0,1] > o_array[size-1,0,1]:
args.flip = (True,False)[args.flip]
o_array = np.flipud(o_array)
if o_array[0,0,1] < o_array[size-1,0,1] > o_array[size,0,1]:
guess_format = "hald"
else:
guess_format = "square"
o_array = square_unwrap(o_array,size)
if args.combine.lower().endswith((".cube",".png",".jpg",".jpeg",".tiff")):
title2 = re.search("[^\\\/]+(?=\.[\w]+$)",args.combine)[0]
if args.combine.lower().endswith(".cube"):
file = open(args.combine,'r').read()
o_array2 = np.array([i.lower().replace(',', '').split() for i in re.findall("\n[+-]?[0-9]*[.]?[0-9]+\s[+-]?[0-9]*[.]?[0-9]+\s[+-]?[0-9]*[.]?[0-9]+",file)],dtype=float).reshape(-1)
lutSize2 = int(re.search("_SIZE.*?(\d+)",file).group(1))
input_title2 = re.search("TITLE.?[\"'](.*?)[\"']",file)
del file
if input_title2:
title2 = input_title2.group(1)
size2 = int((len(o_array2)/3)**(1/6)+.5)
else:
o_array2 = np.array(Image.open(args.combine,'r').convert('RGB'), dtype=np.uint8)
size2 = int((o_array2.shape[0]*o_array2.shape[1])**(1/6)+.5)
lutSize2 = size2**2
if o_array2[0,0,1] > o_array2[size-1,0,1]:
o_array2 = np.flipud(o_array2)
if not o_array2[0,0,1] < o_array2[size-1,0,1] > o_array2[size,0,1]:
o_array2 = square_unwrap(o_array2,size2)
if lutSize is not lutSize2:
if (bool(lutSize < lutSize2 and args.preserve) ^ bool(lutSize > lutSize2 and not args.preserve)):
o_array = array_resize(o_array, lutSize, lutSize2)
lutSize = lutSize2
size = size2
else:
o_array2 = array_resize(o_array2, lutSize2, lutSize)
luts_combine(o_array, o_array2, lutSize, args.mixer)
title = "LUTs combined " + title + " and " + title2
if args.output.lower().endswith(".cube"):
if args.size:
if 3 < args.size != lutSize:
o_array = array_resize(o_array,lutSize,args.size)
lutSize = args.size
if o_array.dtype == "uint8":
o_array = o_array/255
np.savetxt(args.output,o_array.reshape((-1,3)), fmt="%.9f", header="TITLE \"" + title + "\"\nDOMAIN_MIN 0 0 0\nDOMAIN_MAX 1 1 1\nLUT_3D_SIZE " + str(lutSize), comments="")
else:
to_resize = None
if args.input.lower().endswith(".cube"):
standard = "hald"
to_resize = not(int(lutSize**.5)**2==lutSize or (int(lutSize**.5) +1)**2==lutSize)
else:
standard = ("square","hald")[guess_format=="square"]
if args.format:
standard = args.format
if args.size or to_resize:
if args.size and 1 < args.size != size:
size = args.size
o_array = array_resize(o_array,lutSize,size**2)
elif to_resize:
o_array = array_resize(o_array,lutSize,size**2)
if o_array.dtype == "float64":
o_array = (o_array*255+.5).astype(np.uint8)
o_filename = re.search("[^\/|\\\]+$",args.output)[0]
Image.fromarray(wrapper(standard,o_array,size)).save(args.output[:-len(o_filename)] + standard + "_" + o_filename, quality=100)
except FileNotFoundError:
print("Please check paths")