forked from utiasSTARS/pyshoe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_hallway_data.py
62 lines (57 loc) · 3.2 KB
/
plot_hallway_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
from ins_tools.util import *
import ins_tools.visualize as visualize
from ins_tools.INS import INS
import csv
import glob
import scipy.io as sio
source_dir = "data/hallway/"
stats = []
saved_trajectories = {}
###add custom detector and its zv output to lists:
modes = ['comb', 'run', 'walk']
subjects = ['0', '1', '2', '3', '4']
det_list = ['ared', 'shoe', 'adaptive', 'lstm']
thresh_list = [0.55, 8.5e7, [1e7, 35e7,1e7], 0] #zero-velocity thresholds for various detectors (lstm has no threshold)
W_list = [5, 5, 5, 0] #window size used for classical detectors (LSTM requires no window size)
legend = ['ARED', 'SHOE', 'Adaptive', 'LSTM', 'Ground Truth'] #used for plotting results.
load_traj=True #set to false to recompute the trajectories, or true to reload the previously saves trajectories (much faster to reload)
if load_traj==True:
stored_trajectories = sio.loadmat("results/stored_hallway_trajectories.mat")
for f in sorted(glob.glob('{}*/*/*/*.mat'.format(source_dir))):
traj_list = []
trigger_ind_list = []
trial_name = f.replace(source_dir,'').replace('/processed_data.mat','')
print(trial_name)
trial_type, person, folder = trial_name.split('/')
trial_stats = [trial_type, person, folder]
data = sio.loadmat(f)
imu = data['imu']
ts = data['ts'][0]
gt = data['gt']
trigger_ind = data['gt_idx'][0]
ins = INS(imu, sigma_a = 0.00098, sigma_w = 8.7266463e-5, T=1.0/200) #microstrain
###Estimate trajectory for each zv detector
for i in range(0, len(det_list)):
if load_traj !=True:
zv = ins.Localizer.compute_zv_lrt(W=W_list[i], G=thresh_list[i], detector=det_list[i])
x = ins.baseline(zv=zv)
else:
x = stored_trajectories["{}_{}_{}_det_{}_G_{}".format(trial_type,person, folder, det_list[i], thresh_list[i])]
x, gt = align_plots(x,gt, dist=0.8, use_totstat=True, align_idx=trigger_ind[1]) #rotate data
if trial_type == 'run':
ind = 6#3 for halfway
else:
ind= 14 #7 for halfway
traj_list.append(x[0:(trigger_ind[ind]+1)])
traj_list.append(gt)
if trial_type == 'comb':
trial = 'Mixed-Motion Trial'
if trial_type == 'run':
trial = 'Running Trial'
if trial_type == 'walk':
trial = 'Walking Trial'
# visualize.plot_topdown(traj_list, trigger_ind = list(trigger_ind[0:ind+1]), gt_method='sparse', title='{} (Top-Down View)'.format(trial), save_dir='results/figs/hallway/{}_{}_{}.eps'.format(trial_type, person, folder), legend=legend)
# visualize.plot_vertical(ts[0:(trigger_ind[ind]+1)], traj_list, trigger_ind = list(trigger_ind[0:ind+1]), title='{} (Vertical View)'.format(trial), save_dir='results/figs/hallway/{}_{}_{}_vert.eps'.format(trial_type, person, folder), legend=legend)
visualize.plot_topdown(traj_list, trigger_ind = list(trigger_ind[0:ind+1]), gt_method='sparse', title=None, save_dir='results/figs/hallway/{}_{}_{}.eps'.format(trial_type, person, folder), legend=legend)
visualize.plot_vertical(ts[0:(trigger_ind[ind]+1)], traj_list, trigger_ind = list(trigger_ind[0:ind+1]), title=None, save_dir='results/figs/hallway/{}_{}_{}_vert.eps'.format(trial_type, person, folder), legend=legend)