Skip to content

Latest commit

 

History

History
50 lines (34 loc) · 1.09 KB

File metadata and controls

50 lines (34 loc) · 1.09 KB

Predict CO2 emissions and total energy use of Seattle Buildings

How to get the dataset

You can download the dataset and its documentation on Kaggle

Local installation

python -m venv dev
source dev/Scripts/activate
pip install -r requirements.txt

Docker installation

Build the image

docker build --tag app:1.0 .

Train the model

  1. Download the RAW data ;
  2. Execute src/clean.py to create cleaned_data.csv ;
  3. Execute src/prepare_features.py to create training.pkl ;
  4. Execute src/create_folds.py to create training_folds.pkl ;
  5. Execute src/tune_hyper_parameters.py to get optimal parameters ;
  6. Execute src/best.py to train the model ;

Evaluate the performance of the models

python src/report.py --fold=1

fold value is in range [0,4]

Quality tools

python -m isort src/
python -m black src/
python -m flake8 src/ --count --statistics

LICENSE

This project is provided under the MIT license.