From 4ee0bc05be56754672a5a36c0c402634b930d88e Mon Sep 17 00:00:00 2001 From: James Lamb Date: Sun, 22 Dec 2024 10:27:40 -0500 Subject: [PATCH 1/2] [python-package] stop relying on string concatenation / splitting for cv() eval results (#6761) Co-authored-by: Nikita Titov --- python-package/lightgbm/callback.py | 72 +++++++++++++----------- python-package/lightgbm/engine.py | 38 +++++++++---- tests/python_package_test/test_engine.py | 21 +++++++ 3 files changed, 86 insertions(+), 45 deletions(-) diff --git a/python-package/lightgbm/callback.py b/python-package/lightgbm/callback.py index c64fb8ba755b..be8d04ed7a5e 100644 --- a/python-package/lightgbm/callback.py +++ b/python-package/lightgbm/callback.py @@ -71,6 +71,14 @@ class CallbackEnv: evaluation_result_list: Optional[_ListOfEvalResultTuples] +def _is_using_cv(env: CallbackEnv) -> bool: + """Check if model in callback env is a CVBooster.""" + # this import is here to avoid a circular import + from .engine import CVBooster + + return isinstance(env.model, CVBooster) + + def _format_eval_result(value: _EvalResultTuple, show_stdv: bool) -> str: """Format metric string.""" dataset_name, metric_name, metric_value, *_ = value @@ -143,16 +151,13 @@ def _init(self, env: CallbackEnv) -> None: ) self.eval_result.clear() for item in env.evaluation_result_list: - if len(item) == 4: # regular train - data_name, eval_name = item[:2] - else: # cv - data_name, eval_name = item[1].split() - self.eval_result.setdefault(data_name, OrderedDict()) + dataset_name, metric_name, *_ = item + self.eval_result.setdefault(dataset_name, OrderedDict()) if len(item) == 4: - self.eval_result[data_name].setdefault(eval_name, []) + self.eval_result[dataset_name].setdefault(metric_name, []) else: - self.eval_result[data_name].setdefault(f"{eval_name}-mean", []) - self.eval_result[data_name].setdefault(f"{eval_name}-stdv", []) + self.eval_result[dataset_name].setdefault(f"{metric_name}-mean", []) + self.eval_result[dataset_name].setdefault(f"{metric_name}-stdv", []) def __call__(self, env: CallbackEnv) -> None: if env.iteration == env.begin_iteration: @@ -163,15 +168,16 @@ def __call__(self, env: CallbackEnv) -> None: "Please report it at https://github.com/microsoft/LightGBM/issues" ) for item in env.evaluation_result_list: + # for cv(), 'metric_value' is actually a mean of metric values over all CV folds + dataset_name, metric_name, metric_value, *_ = item if len(item) == 4: - data_name, eval_name, result = item[:3] - self.eval_result[data_name][eval_name].append(result) + # train() + self.eval_result[dataset_name][metric_name].append(metric_value) else: - data_name, eval_name = item[1].split() - res_mean = item[2] - res_stdv = item[4] # type: ignore[misc] - self.eval_result[data_name][f"{eval_name}-mean"].append(res_mean) - self.eval_result[data_name][f"{eval_name}-stdv"].append(res_stdv) + # cv() + metric_std_dev = item[4] # type: ignore[misc] + self.eval_result[dataset_name][f"{metric_name}-mean"].append(metric_value) + self.eval_result[dataset_name][f"{metric_name}-stdv"].append(metric_std_dev) def record_evaluation(eval_result: Dict[str, Dict[str, List[Any]]]) -> Callable: @@ -304,15 +310,15 @@ def _gt_delta(self, curr_score: float, best_score: float, delta: float) -> bool: def _lt_delta(self, curr_score: float, best_score: float, delta: float) -> bool: return curr_score < best_score - delta - def _is_train_set(self, ds_name: str, eval_name: str, env: CallbackEnv) -> bool: + def _is_train_set(self, dataset_name: str, env: CallbackEnv) -> bool: """Check, by name, if a given Dataset is the training data.""" # for lgb.cv() with eval_train_metric=True, evaluation is also done on the training set # and those metrics are considered for early stopping - if ds_name == "cv_agg" and eval_name == "train": + if _is_using_cv(env) and dataset_name == "train": return True # for lgb.train(), it's possible to pass the training data via valid_sets with any eval_name - if isinstance(env.model, Booster) and ds_name == env.model._train_data_name: + if isinstance(env.model, Booster) and dataset_name == env.model._train_data_name: return True return False @@ -327,11 +333,13 @@ def _init(self, env: CallbackEnv) -> None: _log_warning("Early stopping is not available in dart mode") return + # get details of the first dataset + first_dataset_name, first_metric_name, *_ = env.evaluation_result_list[0] + # validation sets are guaranteed to not be identical to the training data in cv() if isinstance(env.model, Booster): only_train_set = len(env.evaluation_result_list) == 1 and self._is_train_set( - ds_name=env.evaluation_result_list[0][0], - eval_name=env.evaluation_result_list[0][1].split(" ")[0], + dataset_name=first_dataset_name, env=env, ) if only_train_set: @@ -370,8 +378,7 @@ def _init(self, env: CallbackEnv) -> None: _log_info(f"Using {self.min_delta} as min_delta for all metrics.") deltas = [self.min_delta] * n_datasets * n_metrics - # split is needed for " " case (e.g. "train l1") - self.first_metric = env.evaluation_result_list[0][1].split(" ")[-1] + self.first_metric = first_metric_name for eval_ret, delta in zip(env.evaluation_result_list, deltas): self.best_iter.append(0) if eval_ret[3]: # greater is better @@ -381,7 +388,7 @@ def _init(self, env: CallbackEnv) -> None: self.best_score.append(float("inf")) self.cmp_op.append(partial(self._lt_delta, delta=delta)) - def _final_iteration_check(self, env: CallbackEnv, eval_name_splitted: List[str], i: int) -> None: + def _final_iteration_check(self, *, env: CallbackEnv, metric_name: str, i: int) -> None: if env.iteration == env.end_iteration - 1: if self.verbose: best_score_str = "\t".join([_format_eval_result(x, show_stdv=True) for x in self.best_score_list[i]]) @@ -389,7 +396,7 @@ def _final_iteration_check(self, env: CallbackEnv, eval_name_splitted: List[str] "Did not meet early stopping. " f"Best iteration is:\n[{self.best_iter[i] + 1}]\t{best_score_str}" ) if self.first_metric_only: - _log_info(f"Evaluated only: {eval_name_splitted[-1]}") + _log_info(f"Evaluated only: {metric_name}") raise EarlyStopException(self.best_iter[i], self.best_score_list[i]) def __call__(self, env: CallbackEnv) -> None: @@ -405,21 +412,18 @@ def __call__(self, env: CallbackEnv) -> None: # self.best_score_list is initialized to an empty list first_time_updating_best_score_list = self.best_score_list == [] for i in range(len(env.evaluation_result_list)): - score = env.evaluation_result_list[i][2] - if first_time_updating_best_score_list or self.cmp_op[i](score, self.best_score[i]): - self.best_score[i] = score + dataset_name, metric_name, metric_value, *_ = env.evaluation_result_list[i] + if first_time_updating_best_score_list or self.cmp_op[i](metric_value, self.best_score[i]): + self.best_score[i] = metric_value self.best_iter[i] = env.iteration if first_time_updating_best_score_list: self.best_score_list.append(env.evaluation_result_list) else: self.best_score_list[i] = env.evaluation_result_list - # split is needed for " " case (e.g. "train l1") - eval_name_splitted = env.evaluation_result_list[i][1].split(" ") - if self.first_metric_only and self.first_metric != eval_name_splitted[-1]: + if self.first_metric_only and self.first_metric != metric_name: continue # use only the first metric for early stopping if self._is_train_set( - ds_name=env.evaluation_result_list[i][0], - eval_name=eval_name_splitted[0], + dataset_name=dataset_name, env=env, ): continue # train data for lgb.cv or sklearn wrapper (underlying lgb.train) @@ -430,9 +434,9 @@ def __call__(self, env: CallbackEnv) -> None: ) _log_info(f"Early stopping, best iteration is:\n[{self.best_iter[i] + 1}]\t{eval_result_str}") if self.first_metric_only: - _log_info(f"Evaluated only: {eval_name_splitted[-1]}") + _log_info(f"Evaluated only: {metric_name}") raise EarlyStopException(self.best_iter[i], self.best_score_list[i]) - self._final_iteration_check(env, eval_name_splitted, i) + self._final_iteration_check(env=env, metric_name=metric_name, i=i) def _should_enable_early_stopping(stopping_rounds: Any) -> bool: diff --git a/python-package/lightgbm/engine.py b/python-package/lightgbm/engine.py index 20dfc62b8856..ccbb4376a89f 100644 --- a/python-package/lightgbm/engine.py +++ b/python-package/lightgbm/engine.py @@ -581,15 +581,31 @@ def _agg_cv_result( raw_results: List[List[_LGBM_BoosterEvalMethodResultType]], ) -> List[_LGBM_BoosterEvalMethodResultWithStandardDeviationType]: """Aggregate cross-validation results.""" - cvmap: Dict[str, List[float]] = OrderedDict() - metric_type: Dict[str, bool] = {} + # build up 2 maps, of the form: + # + # OrderedDict{ + # (, ): + # } + # + # OrderedDict{ + # (, ): list[] + # } + # + metric_types: Dict[Tuple[str, str], bool] = OrderedDict() + metric_values: Dict[Tuple[str, str], List[float]] = OrderedDict() for one_result in raw_results: - for one_line in one_result: - key = f"{one_line[0]} {one_line[1]}" - metric_type[key] = one_line[3] - cvmap.setdefault(key, []) - cvmap[key].append(one_line[2]) - return [("cv_agg", k, float(np.mean(v)), metric_type[k], float(np.std(v))) for k, v in cvmap.items()] + for dataset_name, metric_name, metric_value, is_higher_better in one_result: + key = (dataset_name, metric_name) + metric_types[key] = is_higher_better + metric_values.setdefault(key, []) + metric_values[key].append(metric_value) + + # turn that into a list of tuples of the form: + # + # [ + # (, , mean(), , std_dev()) + # ] + return [(k[0], k[1], float(np.mean(v)), metric_types[k], float(np.std(v))) for k, v in metric_values.items()] def cv( @@ -812,9 +828,9 @@ def cv( ) cvbooster.update(fobj=fobj) # type: ignore[call-arg] res = _agg_cv_result(cvbooster.eval_valid(feval)) # type: ignore[call-arg] - for _, key, mean, _, std in res: - results[f"{key}-mean"].append(mean) - results[f"{key}-stdv"].append(std) + for dataset_name, metric_name, metric_mean, _, metric_std_dev in res: + results[f"{dataset_name} {metric_name}-mean"].append(metric_mean) + results[f"{dataset_name} {metric_name}-stdv"].append(metric_std_dev) try: for cb in callbacks_after_iter: cb( diff --git a/tests/python_package_test/test_engine.py b/tests/python_package_test/test_engine.py index 05afddb77c77..a1797d1c1187 100644 --- a/tests/python_package_test/test_engine.py +++ b/tests/python_package_test/test_engine.py @@ -64,6 +64,13 @@ def constant_metric(preds, train_data): return ("error", 0.0, False) +def constant_metric_multi(preds, train_data): + return [ + ("important_metric", 1.5, False), + ("irrelevant_metric", 7.8, False), + ] + + def decreasing_metric(preds, train_data): return ("decreasing_metric", next(decreasing_generator), False) @@ -2570,6 +2577,13 @@ def train_booster(params=params_obj_verbose, **kwargs): assert "valid binary_logloss-mean" in res assert "valid error-mean" in res + # default metric in args with 1 custom function returning a list of 2 metrics + res = get_cv_result(metrics="binary_logloss", feval=constant_metric_multi) + assert len(res) == 6 + assert "valid binary_logloss-mean" in res + assert res["valid important_metric-mean"] == [1.5, 1.5] + assert res["valid irrelevant_metric-mean"] == [7.8, 7.8] + # non-default metric in args with custom one res = get_cv_result(metrics="binary_error", feval=constant_metric) assert len(res) == 4 @@ -2703,6 +2717,13 @@ def train_booster(params=params_obj_verbose, **kwargs): assert "binary_logloss" in evals_result["valid_0"] assert "error" in evals_result["valid_0"] + # default metric in params with custom function returning a list of 2 metrics + train_booster(params=params_obj_metric_log_verbose, feval=constant_metric_multi) + assert len(evals_result["valid_0"]) == 3 + assert "binary_logloss" in evals_result["valid_0"] + assert evals_result["valid_0"]["important_metric"] == [1.5, 1.5] + assert evals_result["valid_0"]["irrelevant_metric"] == [7.8, 7.8] + # non-default metric in params with custom one train_booster(params=params_obj_metric_err_verbose, feval=constant_metric) assert len(evals_result["valid_0"]) == 2 From 60b0155ac573a8ad5994c74c49e05854281e2469 Mon Sep 17 00:00:00 2001 From: RektPunk <110188257+RektPunk@users.noreply.github.com> Date: Mon, 23 Dec 2024 00:35:51 +0900 Subject: [PATCH 2/2] [python-package] Fix inconsistency in `predict()` output shape for 1-tree models (#6753) --- python-package/lightgbm/basic.py | 2 +- tests/python_package_test/test_engine.py | 90 +++++++++++++++++++++++- 2 files changed, 90 insertions(+), 2 deletions(-) diff --git a/python-package/lightgbm/basic.py b/python-package/lightgbm/basic.py index e06290dc1c5f..7b152fd2b006 100644 --- a/python-package/lightgbm/basic.py +++ b/python-package/lightgbm/basic.py @@ -1248,7 +1248,7 @@ def predict( if pred_leaf: preds = preds.astype(np.int32) is_sparse = isinstance(preds, (list, scipy.sparse.spmatrix)) - if not is_sparse and preds.size != nrow: + if not is_sparse and (preds.size != nrow or pred_leaf or pred_contrib): if preds.size % nrow == 0: preds = preds.reshape(nrow, -1) else: diff --git a/tests/python_package_test/test_engine.py b/tests/python_package_test/test_engine.py index a1797d1c1187..667cb86c1a14 100644 --- a/tests/python_package_test/test_engine.py +++ b/tests/python_package_test/test_engine.py @@ -15,7 +15,7 @@ import psutil import pytest from scipy.sparse import csr_matrix, isspmatrix_csc, isspmatrix_csr -from sklearn.datasets import load_svmlight_file, make_blobs, make_multilabel_classification +from sklearn.datasets import load_svmlight_file, make_blobs, make_classification, make_multilabel_classification from sklearn.metrics import average_precision_score, log_loss, mean_absolute_error, mean_squared_error, roc_auc_score from sklearn.model_selection import GroupKFold, TimeSeriesSplit, train_test_split @@ -2314,6 +2314,33 @@ def test_refit(): assert err_pred > new_err_pred +def test_refit_with_one_tree_regression(): + X, y = make_synthetic_regression(n_samples=1_000, n_features=2) + lgb_train = lgb.Dataset(X, label=y) + params = {"objective": "regression", "verbosity": -1} + model = lgb.train(params, lgb_train, num_boost_round=1) + model_refit = model.refit(X, y) + assert isinstance(model_refit, lgb.Booster) + + +def test_refit_with_one_tree_binary_classification(): + X, y = load_breast_cancer(return_X_y=True) + lgb_train = lgb.Dataset(X, label=y) + params = {"objective": "binary", "verbosity": -1} + model = lgb.train(params, lgb_train, num_boost_round=1) + model_refit = model.refit(X, y) + assert isinstance(model_refit, lgb.Booster) + + +def test_refit_with_one_tree_multiclass_classification(): + X, y = load_iris(return_X_y=True) + lgb_train = lgb.Dataset(X, y) + params = {"objective": "multiclass", "num_class": 3, "verbose": -1} + model = lgb.train(params, lgb_train, num_boost_round=1) + model_refit = model.refit(X, y) + assert isinstance(model_refit, lgb.Booster) + + def test_refit_dataset_params(rng): # check refit accepts dataset_params X, y = load_breast_cancer(return_X_y=True) @@ -3872,6 +3899,67 @@ def test_predict_stump(rng, use_init_score): np.testing.assert_allclose(preds_all, np.full_like(preds_all, fill_value=y_avg)) +def test_predict_regression_output_shape(): + n_samples = 1_000 + n_features = 4 + X, y = make_synthetic_regression(n_samples=n_samples, n_features=n_features) + dtrain = lgb.Dataset(X, label=y) + params = {"objective": "regression", "verbosity": -1} + + # 1-round model + bst = lgb.train(params, dtrain, num_boost_round=1) + assert bst.predict(X).shape == (n_samples,) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_features + 1) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, 1) + + # 2-round model + bst = lgb.train(params, dtrain, num_boost_round=2) + assert bst.predict(X).shape == (n_samples,) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_features + 1) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, 2) + + +def test_predict_binary_classification_output_shape(): + n_samples = 1_000 + n_features = 4 + X, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=2) + dtrain = lgb.Dataset(X, label=y) + params = {"objective": "binary", "verbosity": -1} + + # 1-round model + bst = lgb.train(params, dtrain, num_boost_round=1) + assert bst.predict(X).shape == (n_samples,) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_features + 1) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, 1) + + # 2-round model + bst = lgb.train(params, dtrain, num_boost_round=2) + assert bst.predict(X).shape == (n_samples,) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_features + 1) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, 2) + + +def test_predict_multiclass_classification_output_shape(): + n_samples = 1_000 + n_features = 10 + n_classes = 3 + X, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=n_classes, n_informative=6) + dtrain = lgb.Dataset(X, label=y) + params = {"objective": "multiclass", "verbosity": -1, "num_class": n_classes} + + # 1-round model + bst = lgb.train(params, dtrain, num_boost_round=1) + assert bst.predict(X).shape == (n_samples, n_classes) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_classes * (n_features + 1)) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, n_classes) + + # 2-round model + bst = lgb.train(params, dtrain, num_boost_round=2) + assert bst.predict(X).shape == (n_samples, n_classes) + assert bst.predict(X, pred_contrib=True).shape == (n_samples, n_classes * (n_features + 1)) + assert bst.predict(X, pred_leaf=True).shape == (n_samples, n_classes * 2) + + def test_average_precision_metric(): # test against sklearn average precision metric X, y = load_breast_cancer(return_X_y=True)